ACC/AHA Guideline-Driven In-Hospital ECG Monitoring

By: Wayne Ruppert Regional Cardiovascular Coordinator Bayfront North Hospitals

Copyright 2010, 2015, 2018

All cardiovascular subject-related images, graphics and diagrams in this PowerPoint were created by the author, Wayne Ruppert, and have been taken from his two published textbooks, "STEMI Assistant" and "12 Lead ECG Interpretation in ACS with Case Studies from the Cardiac Cath Lab," which are Copyright protected. No content may be removed from this PowerPoint presentation, nor may this presentation or any component thereof be used without written consent from the author.

Wayne.ruppert@bayfronthealth.com

Download this paper

Standards for Inpatient Electrocardiographic Monitoring

Oct 04, 2017 | Richard L. Weinberg, MD, PhD, FACC

Authors:	Sandau KE, Funk M, Auerbach A, et al., on behalf of the American Heart Association Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology; and Council on Cardiovascular Disease in the Young.
Citation:	Update to Practice Standards for Electrocardiographic Monitoring in Hospital Settings: A Scientific Statement From the American Heart Association. <i>Circulation</i> 2017;Oct 3:[Epub ahead of print].

Update to Practice Standards for Electrocardiographic Monitoring in Hospital Settings

A Scientific Statement From the American Heart Association

Endorsed by the American College of Cardiology, American Association of Critical-Care Nurses, and Pediatric and Congenital Electrophysiology Society

The comprehensive document is grouped into 5 sections: (1) Overview of Arrhythmia, Ischemia, and QTc Monitoring; (2) Recommendations for Indication and Duration of Electrocardiographic Monitoring presented by patient population; (3) Organizational Aspects: Alarm Management, Education of Staff, and Documentation; (4) Implementation of Practice Standards; and (5) Call for Research.

he goals of electrocardiographic monitoring have expanded from simple heart rate and basic rhythm determination to the diagnosis of complex arrhythmias, the detection of acute and often silent myocardial ischemia, and the identification of drug-induced prolonged QT interval. The first American Heart Association (AHA) scientific statement on practice standards for electrocardiographic monitoring in hospital settings was published in 2004¹ and provided an interprofessional, comprehensive review of evidence and recommendations for continuous electrocardiographic monitoring of hospitalized patients.

Understanding "multiple leads"...

Correct location of each ECG Lead

Obtaining the 12 Lead ECG

STANDARD LEAD PLACEMENT ---12 LEAD ECG

4 th INTERCOSTAL SPACE

V4 is at 5th INTERCOSTAL SPACE. V5 & V6 are on the SAME HORIZONTAL PLANE.

- PATIENT SHOULD LAY AS FLAT AS POSSILVE
- LIMB LEADS SHOULD BE PLACED AS DISTALLY AS POSSIBLE

Understanding "multiple leads"...

- Correct location of each ECG Lead
- Region of the Heart viewed by each Lead

THE ECG MACHINE STANDARD 12 LEADS - USES 10 WIRES (6 CHEST and 4 LIMB)

- LEADS I, II, III, and V1, V2, V3, V4, V5, V6

- 1 POSITIVE ELECTRODE -
- 1 NEGATIVE ELECTRODE -
- **1 GROUND ELECTRODE**
- LEADS AVR, AVL, and AVF
 - 1 POSITIVE ELECTRODE ~
 - 2 NEGATIVE ELECTRODES
 - **1 GROUND ELECTRODE**

G

IS THE "EYE" . . .

CURRENT MOVING TOWARD THE EYE (POSITIVE ELECTRODE)

RECORDS AN "UPWARD" DEFLECTION

CURRENT MOVING AWAY FROM THE EYE (POSITIVE ELECTRODE)

RECORDS A "DOWNWARD" DEFLECTION

What part of the HEART does each lead SEE ?

THE POSITIVE ELECTRODE

IS THE "EYE" . . .

Imagine a body made of clear glass, with only a HEART inside. We dip this body in liquid chocolate, and then scratch holes in each spot where we normally place the ECG leads

AREAS VIEWED by 12 LEAD ECG		
AVR		
AVL, I		
V1, V2		
V3, V4		
V5, V6		
II, III, AVF		

THE POSITIVE ELECTRODE

Lead AVR Views the BASILAR SEPTUM (region of the Bundle of His)

V1 - V4 VIEW THE ANTERIOR-SEPTAL WALL of the LEFT VENTRICLE

V1, V2 - ANTERIOR / SEPTAL V3, V4 - ANTERIOR

via RECIPROCAL CHANGES.

HOW EKG VIEWS INDICATIVE CHANGES

EXAMPLE:

If we put ECG leads on the BACK of a PATIENT who is having an ACUTE POSTERIOR WALL MI.....

ST Depression can indicate:

- ISCHEMIA
- "Partial-wall thickness" MI (NSTEMI)
- STEMI (in the opposite side of the heart)
- Other things (like RBBB, certain medications, etc).

V5 - V6 VIEW THE LATERAL WALL of the LEFT VENTRICLE

LEADS II, III, and aVF VIEW INFERIOR WALL of the LEFT VENTRICLE

AREAS VIEWED by 12 LEAD ECG

AVR	BASILAR SEPTAL	
AVL, I	LATERAL	

V1, V2 ANTERIOR

SEPTAL

POSTERIOR (recip.)

V3, V4	ANTERIOR

V5, V6 LATERAL

II, III, AVF INFERIOR

Vent, rate BPM 64 Normal sinus rhythm PR interval 130 ms Normal ECG QRS duration 96 ms No previous ECGs available QT/QTc 396/408 ms P-R-T axes 40 11 61 Referred by: 0.5 ANTERIOR / SEPTAL **PROXIMAL LATERAL BASILAR SEPTUM** ANTERIOR or PROXIMAL ANTERIOR (Bundle of His region) aVR V1 **V**4 INFERIOR PROXIMAL LATERAL ANTERIOR / SEPTAL LATERAL or PROXIMIAL ANTERIOR П aVL V2 V5 INFERIOR LATERAL INTERIOR ANTERIOR Ш V3 V6 aVF 28

The Patient Arrives . . .

- Standard Tele / ECG hookup:
 - LEAD II
 - LEAD V2

LEAD PLACEMENT

5 WIRE TELEMETRY UNIT

Lead V2 – GOOD Choice.....

Why not V1 ? (we've used V1 for years!)

Why not V1 ? (often won't see STEMI !)

If you were only monitoring Leads II and V1, you would NOT detect this patient's STEMI !!

Ineffectiveness of LEAD V1 for early detection of Anterioseptal STEMI

Why not V1 ? (may not detect critical QTc)

The Patient Arrives . . .

- Standard Tele / ECG hookup:
 - LEAD II
 - LEAD V2
- Evaluate patient: any symptoms of ACS ?
CHIEF COMPLAINT

KEY WORDS:

"CHEST: PAIN / HEAVINESS / PRESSURE/ FUNNY FEELING IN," etc.

SHORTNESS BREATH

DIZZINESS / LIGHTHEADEDNESS

ETC. ETC. ETC.

<u>TYPICAL SYPTOMS of</u> <u>Acute Cornary Syndrome:</u>

✓ CHEST PAIN - DESCRIBED AS ...

- "HEAVINESS, PRESSURE, DULL PAIN, TIGHTNESS"
- CENTERED IN CHEST, SUBSTERNAL
- MAY RADIATE TO SHOULDERS, JAW, NECK, LEFT or RIGHT ARM
- NOT EFFECTED by:
 - MOVEMENT
 - POSITION
 - DEEP INSPIRATION

SHORTNESS OF BREATH

- MAY or MAY NOT BE PRESENT

NAUSEA / VOMITING

- MAY or MAY NOT BE PRESENT

INFARCTION

- - - "Classic Symptoms" - - -

QUICK ASSESSMENT "SHORT FORM"

SUBSTERNAL CHEST PAIN (HAVE PATIENT POINT TO WORST PAIN)

- DESCRIBED AS "DULL PAIN," "PRESSURE," or "HEAVINESS"
- DOES NOT CHANGE WITH DEEP BREATH

ATYPICAL SYMPTOMS of ACS

???

Acute MI patients who present without chest pain^{*} are SHREWD:

Stroke (previous history of) Heart failure (previous history of) Race (non-white) Elderly (age 75+) Women Diabetes mellitus * The information listed in the table to the immediate left resulted from a study conducted by John G. Canto, MD, MSPH, et. al., of the University of Alabama. The study consisted of 434,877 patients diagnosed with AMI between 1994 and 1998 in 1,674 US hospitals. Study results were published in the Journal of the American Medical Association (JAMA) on June 28, 2000, Vol. 283, No. 24, pages 3223-3229

Common atypical complaints associated with AMI without chest pain include:

Malaise (weakness) Indigestion Nausea Dizziness Syncope

Fatigue Abdominal pain Cold sweats Elevated heart rate Dsypnea

BOOK PAGE: 70

Effect of Having Multiple Risk Factors for AMI Without Chest Pain

NUMBER OF RISK FACTORS PRESENT

RISK FACTORS INCLUDE: Stroke (previous), Heart failure (previous), Race (non-white), Elderly (age 75+), Women, Diabtetes

DATA SOURCE: J. CANTO, MD, MSPH, et al, JAMA 2000; 283: 3223 - 3229

WOMEN'S MAJOR SYMPTOMS PRIOR TO THEIR HEART ATTACK:

- UNUSUAL FATIGUE 71 %
- SLEEP DISTURBANCE 48 %
- • SOB
 42 %

 • INDIGESTION
 39 %

 • ANXIETY
 36 %
- ANXIETY 36 %

APPROXIMATELY 78 % OF WOMEN REPORTED EXPERIENCING AT LEAST ONE OF THESE SYMPTOMS FOR MORE THAN ONE MONTH EITHER DAILY OR SEVERAL TIMES PER WEEK PRIOR TO THEIR MI.

WOMEN'S MAJOR SYMPTOMS DURING THEIR HEART ATTACK:

SHORTNESS OF BREATH	58 %
WEAKNESS	55 %
UNUSUAL FATIGUE	43 %
COLD SWEAT	39 %
DIZZINESS	39 %

ANY TIME DURING THEIR MI!

Circulation, 2003:108;2619-2623

Physical Exam – Clues of MI:

- Skin may be PALE, CLAMMY
- **SWEATING** ! (Diaphoresis)
- Clutching /Rubbing chest
- BP can be high, normal or low
- Anxiety / "look of impending doom."

The Patient Arrives . . .

- Standard Tele / ECG hookup:
 - LEAD II
 - LEAD V2
- Evaluate patient: any symptoms of ACS ?
- Review 12 Lead ECG. Look for:
 - Signs of ischemia
 - QT prolongation

Evaluating the ECG for ACS:

A TWO-STEP process:

Evaluating the ECG for ACS: A TWO-STEP process: STEP 1: Evaluate QRS Width

Evaluating the ECG for ACS:

A TWO-STEP process:

STEP 1: Evaluate QRS Width

STEP 2: Evaluate J Points, ST-Segment and T waves in EVERY Lead

STEP 1 – evaluate QRS width:

 QRS is ABNORMALLY WIDE (>120 ms),

 indicates DEPOLARIZATION ABNORMALITY
 (e.g. "bundle branch block, Wolff-Parkinson-White Syndrome, etc).

STEP 1 – evaluate QRS width:

- QRS is ABNORMALLY WIDE (>120 ms),
 - indicates DEPOLARIZATION ABNORMALITY (e.g. "bundle branch block, Wolff-Parkinson-White Syndrome, etc).
 - DEPOLARIZATION ABNORMALITIES in turn cause REPOLARIZATION ABNORMALITIES, which alters the: J Points, ST-Segments and/or T Waves.

 Determine RIGHT vs. LEFT Bundle Branch Block Pattern

Simple "Turn Signal Method" . . .

THE "TURN SIGNAL METHOD" for identifying BUNDLE BRANCH BLOCK

USE LEAD V1 for this technique

To make a **RIGHT TURN**

you push the turn signal lever UP.....

THINK:

V1

V1

"QRS points UP = RIGHT BUNDLE BRANCH BLOCK"

To make a **LEFT TURN** you push the turn signal lever **DOWN**

THINK:

"QRS points DOWN = LEFT BUNDLE BRANCH BLOCK"

DIAGNOSING BUNDLE BRANCH BLOCK

USING LEADS V1, V2, and V5, V6:

LOCATING RsR' or RR' COMPLEXES:

RIGHT BUNDLE BRANCH BLOCK

LEFT BUNDLE BRANCH BLOCK

From: "Rapid Interpretation of ECGs" by Dale Dubin, MD

Evaluating the ECG for ACS:

- When RIGHT Bundle Branch Block pattern is present:
 - Precordial Leads typically demonstrate ST
 Depression and T wave Inversion

- When RIGHT Bundle Branch Block pattern is present:
 - Precordial Leads typically demonstrate ST
 Depression and T wave Inversion
 - DOES NOT MASK STEMI; when ST Elevation is noted, CONSIDER STEMI ! !

RBBB with CHEST PAIN - CASE 1: ST ELEVATION IN LEADS V1 - V4

CATH LAB FINDINGS: TOTAL OCCLUSION of mid - LEFT ANTERIOR DESCENDING ARTERY.

RBBB with CHEST PAIN - CASE 3: ST ELEVATION V3 - V6, II, III, aVF

When LBBB QRS pattern is present:

- When LBBB QRS pattern is present:
 - -ST-Segment Elevation is typically noted in Precordial Leads

- When LBBB QRS pattern is present:
 - -ST-Segment Elevation is typically noted in Precordial Leads
 - Can cause up to 5mm of J Point Elevation in normally calibrated ECG (1mm=10mv)

- When LBBB QRS pattern is present:
 - -ST-Segment Elevation is typically noted in Precordial Leads
 - Can cause up to 5mm of J Point Elevation in normally calibrated ECG (1mm=10mv)
 - Does NOT typically cause ST elevation in INFERIOR Leads (II, III and AVF).

2013 ACC/AHA Guideline for Management of STEMI

• ST Elevation of 0.1mv (1mm) or more in leads with Positive Deflection QRS complexes

2013 ACC/AHA Guideline for Management of STEMI

- ST Elevation of 0.1mv (1mm) or more in leads with Positive Deflection QRS complexes
- ST Elevation of 0.5mv (5mm) or more in leads with Negative Deflection QRS complexes

2013 ACC/AHA Guideline for Management of STEMI

- ST Elevation of 0.1mv (1mm) or more in leads with Positive Deflection QRS complexes
- ST Elevation of 0.5mv (5mm) or more in leads with Negative Deflection QRS complexes
- ST Segment Changes as compared with those of older ECGs with LBBB

2013 ACC/AHA Guideline for Management of STEMI

- ST Elevation of 0.1mv (1mm) or more in leads with Positive Deflection QRS complexes
- ST Elevation of 0.5mv (5mm) or more in leads with Negative Deflection QRS complexes
- ST Segment Changes as compared with those of older ECGs with LBBB
- Convex ST Segment

HELPFUL INDICATORS FOR ECG DIAGNOSIS OF STEMI in the presence of LBBB:

- ST ELEVATION > 5 mm
- COMPARE J POINT, ST SEGMENTS and T WAVES of previous ECG with LBBB to NEW ECG.
- CONVEX ST SEGMENT = poss. MI CONCAVE ST SEGMENT = normal
- CONCORDANT ST changes (1 mm or > ST DEPRESSION V1 - V3 or ST ELEVATION LEADS II, III, AVF)
- ST ELEVATION in LEADS II, III, and/or AVF

N. ENGL. J. MED v 348; p933 - 940 - Zimetbaum, et. al.

"Electrocardiographic Diagnosis of Evolving Acute Myocardial Infarction in the Presence of Left Bundle-Branch Block" Birnbaum et al, N Engl J Med 1996; 334:481-487
Be advised that in patients with

Left Bundle Branch Block Combined with Ventricular Hypertrophy,

The J Point elevation can exceed 0.5 mv (5mm) above the iso-electric line in patients without ACS.

LBBB with CHEST PAIN - CASE 1: PRESENTING EKG

BPM

ms

ms

ms

Vent. rate PR interval QRS duration QT/QTc 77 128 158 454/513 43 -11

Normal sinus rhythm Left bundle branch block

Abnormal ECG

LBBB with CHEST PAIN NEW ONSET of LBBB CASE 2:

77

172

142

38 0

BPM

ms

ms

ms

92

Normal sinus rhythm Left bundle branch block Abnormal ECG

Evaluating the ECG for ACS:

Evaluating the ECG for ACS: Patients with Normal Width QRS (QRSd < 120ms)

STEP 2 - EVALUATE the EKG for ACS

THE EKG MARKERS USED FOR DETERMINING THE PRESENCE OF ACUTE CORONARY SYNDROME INCLUDE:

- J POINTS
- ST SEGMENTS
- T WAVES

CAREFULLY SCRUTINIZE THESE MARKERS IN EVERY LEAD OF THE 12 LEAD EKG, TO DETERMINE IF THEY ARE NORMAL or ABNORMAL.

Defining NORMAL:

THE J POINT SHOULD BE ..

THE ISOELECTRIC LINE

. . .the "flat line" between ECG complexes, when there is no detectable electrical activity . . .

The Isoelectric Line it's not always isoelectric ! THE ISOELECTRIC LINE

EKG from 13 y/o girl in ACCELERATED JUNCTIONAL RHYTHM. note: upsloping T-P interval, and P buried in T waves.

THE P-Q JUNCTION

. . is the POINT where the P-R SEGMENT ends and the QRS COMPLEX BEGINS. **Used for POINT OF REFERENCE** for measurement of the J-POINT and the S-T SEGMENT -

 as per the A.H.A., A.C.C., and WANG, ASINGER, and MARRIOTT, N.E.J.M. vol. 349:2128-2135 Nov. 27, 2003

THE S-T SEGMENT

SHOULD HAVE A "SLIGHT POSITIVE" INCLINATION

THE S-T SEGMENT

SHOULD BE "CONCAVE" IN SHAPE . . .

THE S-T SEGMENT

AS OPPOSED TO "CONVEX" IN SHAPE

SHOULD BE "CONCAVE" IN SHAPE . . .

THE T WAVE

- IN THE LIMB LEADS, SHOULD BE LESS THAN 1.0 mv (10 mm)
- IN THE PRECORDIAL LEADS, SHOULD BE LESS THAN 0.5 mv (5 mm)
- SHOULD NOT BE TALLER THAN R WAVE IN 2 OR MORE LEADS.

When QRS width is normal (<120ms), use this example of NORMAL as your

R

12

6 - 7

3

When QRS duration is NORMAL (< 120 ms):

NORMAL ST - T WAVES

in EVERY LEAD EXCEPT aVR !!

- WHEN QRS WIDTH IS NORMAL (< 120 ms)

ASSESS:

- J POINT: ISOELECTRIC (or < 1 mm dev.)
- ST SEG: SLIGHT, POSITIVE INCLINATION -

- T WAVE: UPRIGHT, POSITIVE -

The Normal 12 Lead EKG

- NSR (rate 60-100, regular rhythm)
- P Waves upright all leads except aVR
- P Waves inverted lead aVR, possibly V1
- QRS upright Leads I, II, III, aVL, aVF, V5, V6
- QRS inverted Leads aVR, V1, V2
- QRS biphasic: Leads V3, V4
- P wave size: up to 2mm tall, 2.5mm long
- QRS height Limb Leads: 5-15mm tall
- QRS height V Leads 10-15mm tall
- QRS width: not to exceed 3mm (120 ms)
- Overall QRS Amplitude: not greater than 30mm

The Normal 12 Lead EKG

- T waves Upright all Leads except aVR
- T wave Inverted in Lead aVR
- (everything is inverted in lead aVR)
- T wave MAY be inverted (as a normal variant) in Leads III and aVL.
- Overall QRS Amplitude: not greater than 30mm

QUESTION:

If we just defined NORMAL, what is

ABNORMAL ? ?

ANSWER:

EVERYTHING ELSE. If it isn't NORMAL is ABNORMAL !!

Simply stated, if the - J Points - ST-Segments - T Waves

are NOT NORMAL, they are **ABNORMAL.**...

. . . And whenever the

- J Points
- ST-Segments
- T Waves

are **ABNORMAL,** it can be an INDICATION of **ACUTE CORONARY SYNDROME !**

_			
	INVERTED T WAVE	$\sim h$	- MYOCARDITIS - ELECTROLYTE IMBAL. - ISCHEMIA
	SHARP S-T T ANGLE		- ACUTE MI (NOT COMMON) - ISCHEMIA
6	BI-PHASIC T WAVE (WELLEN'S)	-~~	- SUB-TOTAL LAD LESION - VASOSPASM - HYPERTROPHY
	DEPRESSED J POINT with UPSLOPING ST	~/~	- ISCHEMIA
	DOWNSLOPING S-T SEGMENT	$\sim \sim \sim$	- ISCHEMIA

Some less common, less reliable possible indicators of ACS:

?	FLAT S-T SEGMENT > 120 ms	$\sim \sim \sim$	- ISCHEMIA
?	LOW VOLTAGE T WAVE WITH NORMAL QRS	~	- ISCHEMIA
?	U WAVE POLARITY OPPOSITE THAT OF T WAVE		- ISCHEMIA

Evaluate QTc

- "QUICK PEEK" Method
- QTc vs QT Interval

Lead Selection: QT Interval

• Targeted QT measurement using 12 Lead ECG:

Appropriate Lead Selection

The AHA/ACC Foundation/Heart Rhythm Society recommendations for the standardization and interpretation of the ECG (2009) recommend selecting the electrocardiographic lead with the longest T wave when monitoring the QT interval

Chest Leads V2 & V3 often display LONGEST QT Intervals.

THE Q - T INTERVAL

- NORMAL VALUES VARY BASED ON HEART RATE
- SEVERAL WAYS TO DETERMINE NORMAL LIMITS

DETERMINING Q-T INTERVAL LIMITS THE "QUICK PEEK" METHOD

Relatively accurate method to quickly identify patients with abnormal QT Intervals.
Applies to patients with normal heart rates (60-100) and narrow QRS (QRSd <120ms)

The Q - T Interval should be LESS THAN 1/2 the R - R Interval

The Q - T Interval should be LESS THAN 1/2 the R - R Interval

THE *QTC INTERVAL

* QTc = Q-T interval, corrected for heart rate

RATE	MALE	FEMALE	
150	0.25	0.28	
125	0.26	0.29	
100	0.31	0.34	
93	0.32	0.35	
83	0.34	0.37	
71	0.37	0.40	
60	0.40	0.44	
50	0.44	0.48	
43	0.47	0.51	

Annals of Internal Medicine, 1988 109:905.
Determining the QTc Manual calculation:

QT CORRECTION FORMULAS:

Bazett's Fredericia Framingham Rautaharju QTc=QT/ \sqrt{RR} QTc=QT/(RR)1/3 QTc=QT+0.154(1-RR) QTp=656/(1+HR/100)

Methods to obtain QTc:

• Look at 12 Lead ECG printout (at top of page)

Determining the QT / QTc Method 1 – 12 Lead ECG Report:

Methods to obtain QTc:

- Look at 12 Lead ECG printout (at top of page)
- Call Monitor Tech they can give immediate value

Methods to obtain QTc:

- Look at 12 Lead ECG printout (at top of page)
- Call Monitor Tech they can give immediate value
- Calculate it yourself using smartphone App

Corrected QT Interval (QTc) 17+

Daniel Juergens

\$0.99

"There's an APP for that!"

iPhone Screenshots

Abnormal QTc

1	2 ABC	3 DEF
4	5	6
вні	JKL	MNO
7	8	9
PORS	TUV	^{wxyz}
	0	8

Carrier 😤 12:52 AM

< Back

Like the R-R interval, the QT interval is dependent on the heart rate and may be adjusted to improve the detection of patients at increased risk of ventricular arrhythmia. The standard clinical correction is the Bazett's formula, which is used in this app. For risk of sudden cardiac death, "borderline QTc" in males is 431-450 ms, and in females 451-470 ms, An "abnormal" QTc in males is a QTc above 450 ms, and in females, above 470 ms.

QT_interval (20.08.2016)

The information contained within this application is for informational purposes only and does not constitute medical or health advice. You should not rely on the information portrayed in this application as an alternative to medical advice from your doctor or any other professional healthcare provider.

Determining the QTc

• iPhone

- <u>https://itunes.apple.com/us/app/corrected-qt-interval-qtc/id1146177765?mt=8</u>
- Android
 - <u>https://play.google.com/store/apps/details?id=co</u>
 <u>m.medsam.qtccalculator&hl=en</u>

Corrected QT Interval (QTc) ☆

Corrects the QT interval for heart rate extremes (choose from Bazett, Fridericia, Framingham, or Hodges formulas).

IMPORTANT We launched a COVID-19 Resource Center, including a critical review of recommended calcs. When to Use Why Use

Formula	Bazett		
	Fridericia		
	Framingham		
	Hodges		
Heart rate/pulse	53	beats/min	
Paper speed, mm/sec	25	50	
QT interval Toggle unit to use msec or small boxes; 1 small	680	msec 🖕	
639 msec			
Corrected QT Interval (QTc)			
	Copy R e sults 📋	Next Steps >>>	

QTc Values:

Too Short:	< 390 ms		
Normal			
-Males:	390 - 450 ms		
-Females:	390 - 460 ms		
Borderline High			
-Males:	450 - 500 ms		
-Females:	460 - 500 ms		
High (All Genders):	500 - 600 ms		
Critical High			
(associated with TdP): 600 + ms			

SOURCE: "ACC/AHA/HRS Recommendations for Standardization and Interpretation of the ECG, Part IV: The ST Segment, T and U Waves, and the QT Interval" Rautaharju et al 2009

Prolonged QT Interval

- QTc 500 520 may be due to oral antiarrhythmics (sotalol, amiodarone, etc)
- QTc above 500: NOT ADVISABLE to administer any QT prolonging meds

Check electrolytes (especially K, Mg, Ca)

- QTc 550 and above: advise immediate discontinuance of all QT prolonging meds
- QTc 600+ ANTICIPATE Torsades de Pointes (TdP)

Dysrhythmia Associated with Mortality, Triggered by LQTS: *Torsades de Pointes*

Torsades de Pointes (TdP) – HEMODYNAMICS:

- Decreased to NO Cardiac Output
- Often patient PULSELESS during episode
- Patients often report SYNCOPE when TdP self-terminates.
- May DETERIORATE into VENTRICULAR FIBRILLATION and CARDIAC ARREST. ("Sudden Death")

ECG Characteristics of TdP: The QRS Pattern of *Torsades de Pointes* resembles

a piece of Twisted Ribbon !

(QRS > 120 ms)

DO NOT give PROCAINAMIDE, AMIODARONE, or SOTALOL to patients with TORSADES or POLYMORPHIC VT !!!

OTHER CONSIDERATIONS:

WIDE COMPLEX TACHYCARDIA TORSADES de POINTES

- EVALUATE BASELINE ECG RHYTHM FOR PRONGED Q-T INVERVAL.
- EVALUATE PATIENT'S MEDS FOR Q-T PROLONGING DRUGS
 - ... IF PATIENT HAS BEEN RECEIVING ANY Q-T PROLONGING DRUGS, IMMEDIATELY DISCONTINUE AND CONTACT PHYSICIAN STAT.
- EVALUATE PATIENT HISTORY FOR PREVIOUS EVENTS OF "SYNCOPE OF UNKOWN ETIOLOGY" - EVALUATE PATIENT FOR FAMILY HISTORY FOR SUDDEN CARDIAC DEATH

REPORT ANY ABNORMAL FINDINGS TO PHYSICIAN.

Rate		58	Sinus rhythm	Req Provider:	Rafael Santiago-Aponte
PR		185	IVCD, consider atypical RBBB		
QRSd		126	Baseline wander in lead(s) V2.V3.V4.V6		
QT		668	COMPARED TO ECG 07/22/2020 16:56:59		
QTc		657	SINUS RHYTHM NOW PRESENT		
8	Axis				
P		107			
QRS		61			
T		45			

Prolonged QT Interval

• Congenital (14 subtypes)

CONGENITAL LONG QT SYNDROMES: ECG PATTERNS of 3 MOST COMMON VARIATIONS:

Туре	Current	Functional Effect	Frequency Among LQTS	ECG ^{12,13}	Triggers Lethal Cardiac Event ¹⁰	Penetrance*
LQTS1	к	Ļ	30%-35%		Exercise (68%) Emotional Stress (14%) Sleep, Repose (9%) Others (19%)	62%
LQTS2	к	ļ	25%-30%	~~~~	Exercise (29%) Emotional Stress (49%) Sleep, Repose (22%)	75%
LQTS3	Na	Ť	5%-10%		Exercise (4%) Emotional Stress (12%) Sleep, Repose (64%) Others (20%)	90%

22 y/o FEMALE

Vent. rate 53 bpm PR interval 110 ms QRS duration 84 ms QT/QTc 678/636 ms P-R-T axes 25 60 48

Chief Complaint: "Grand-Mal Seizures" With NO postictal phase!

WHEN THE "QUICK PEEK" METHOD for QT INTERAL EVALUATION IS APPLIED TO THE ABOVE ECG, WHAT IS THE RESULT?

Long QT Syndromes and Torsade de Pointes

Gan-Xin Yan

I. Long QT syndrome: What every physician needs to know.

Long QT syndrome (LQTS) is an inherited disorder of delayed ventricular repolarization characterized by a prolonged QT interval on electrocardiography (ECG) and a

propensity to torsades de pointes (TdP). TdP by definition is: (1) a polymorphic ventricular tachycardia that occurs specifically under conditions of QT prolongation; and (2) it is almost always initiated by R-on-T ectopic beats. Clinical manifestations of TdP include syncope (fainting), seizure (epilepsy), or sudden cardiac death. As shown in Figure 1, an episode of sustained TdP was recorded in a patient aged 13 years with LQTS type 2. The episode during which the boy had "seizures" was triggered by the alarm clock in the early morning.

Figure 1:

Torsade de pointes in a long QT syndrome type 2 patient.

This ECG illustrates the degree of variation that can be noted between different leads on the 12 Lead ECG. ALWAY measure the QT Interval in the lead with the GREATEST value.

Prolonged QT Interval

- Congenital
- Acquired
 - MEDICATION INDUCED MAJOR CAUSE of IN-HOSPITAL MORTALITY
 - Electrolyte Imbalances (hypomagnesemia, hypokalemia, hypercalcemia)
 - Increased intracranial pressure
 - HYPOTHERMIA (accidental and Induced TTM)

PATIENT 1: NORMAL

PATIENT 2: Genetic susceptibility; sensitivity to QT prolonging drugs:

<u>Click here for link to paper by Kannankeril et al (2010</u> <u>Pharmacological Reviews) that describes genetic susceptibility</u> <u>described above.</u>

<u>QT Prolongation -- STAT Intervention:</u>

Avoidance of Meds that are known to prolong the QT Interval. Click here to search medications at CREDIBLEMEDS.ORG

Commonly used QT prolonging meds include:-Amiodarone-Ritalin-Procainamide-Pseudophedrine

- -Levaquin
- -Erythromycin
- -Norpace
- -Tequin
- -Benadryl

- -Haloperidol
- -Thorazine
- -Propulcid
- -Zofran
- -Ilbutilide

Medication induced LQTS with TdP and Cardiac Arrest - Case Study: 56 year old male

Medication induced LQTS with TdP and Cardiac Arrest - Case Study: 56 year old male

SIEMENS	1. Rest:Tachy 10:25:03 AM	AXIOM Sensis XP VC03C
	Minim	mmmmm.
	MMMM	Mm
AO 200 mmHg B		180
		160
		0
		120
\land		100
		80
		dQ
mun	Martinger	my man
	$\gamma \gamma \gamma$	20
		25 mm/s
	Study: Coronary	^Diagnosti

Run of Torsades de Pointes occurred during Cardiac Catheterization . . .

Medication induced LQTS with TdP and Cardiac Arrest - Case Study: 56 year old male 11 10 mm/mV AMAMA AO 200 mmHg B Study: Coronary^Diagnosti...

Torsades de Pointes self-terminates just before aborted Defibrillation

Medication induced LQTS with TdP and Cardiac Arrest - Case Study: 56 year old male

www.crediblemeds.org

- <u>Smartphone Apps</u>
- List of clinical factors associated with prolonged QTc and/or Torsades de Pointes (TdP)

Other QT issues

• A-fib: challenging to calculate QTc due to varying R-R intervals. The next slide show the forumulas for a more accurate calculation . . .

From: What Clinicians Should Know About the QT Interval

JAMA. 2003;289(16):2120-2127. doi:10.1001/jama.289.16.2120

QTc indicates corrected QT interval; RR, R-R interval. A, Normalsinus rhythm; the Bazett formula is used to correct the QT interval for theheart rate. B, Atrial fibrillation; QT interval is calculated by taking theaverage of QT intervals with shortest and longest preceding R-R intervals.

Figure Legend:

Other QT issues

- A-fib: challenging to calculate QTc due to varying R-R intervals.
- Wide QRS (QRSd >120ms): The delay in depolarization (widening of QRS) will also delay repolarization. Therefore a QT interval that appears "elongated" may be due to nothing more than a Bundle Branch Block.

Determining QT Interval when Bundle Branch Block is Present: Science Direct (Elsevier October, 2020) click here to download article

First described formula		FOR LBBB:	$QT_m = QT_{LBBB} - 48.5\% * QRS_{LBBB}$	
SIMPLIFIED FORMULA		FOR BBB:	QT _m =QT _{BBB} - 50%*QRS _{BBB}	
QTm	T _m = estimated QT interval after application of the Formula			
QT _{LBBB}	= measured QT interval in presence of LBBB			
QRS _{LBBB}	= measured QRS interval in presence of LBBB			
QT _{BBB}	= measured QT interval in presence of any BBB			
QRS _{BBB}	= measured QRS interval in presence of any BBB			

The Patient Arrives . . .

- Standard Tele / ECG hookup:
 - LEAD II
 - LEAD V2
- Evaluate patient: any symptoms of ACS ?
- Review 12 Lead ECG. Look for:
 - Signs of ischemia
 - QT prolongation
- REPOSITION ECG Leads (if indicated)

Tele Lead Selection: ABNORMAL 12 Lead ECG (ischemia)

- Review patient's 12 Lead EKG
- Select Lead displaying "worst" signs of ischemia (ST segment, T wave abnormalities) to be the lead used for continuous monitoring
- Set the "automated ST Segment Alarm" for this lead.

What leads show signs of possible ACS?

12 Lead ECG shows ISCHEMIC CHANGES Lateral Wall:

Lead Selection: 12 Lead ABNORMAL

• Limb Lead I

- V2 (if QTc is 500 or more and/or patient receiving QT prolonging medication)
- V5 (if QTc <500ms and patient is NOT receiving QT prolonging meds).

What's the rationale behind monitoring the ECG lead viewing the region of known/suspected ischemia?

The "common sense" rationale:

If your friend says, "pick me up in front of my house in 15 minutes."

... You wouldn't drive around to the back of the house and watch for your friend at the back door.

If you were only monitoring Lead II on this patient with *suspected Anterior Wall ischemia*....

YOU WOULD MISS THIS:

AND you may have noted the subtle ECG changes LONG BEFORE the patient's MI evolved into this massive ANTERIOR LATERAL STEMI.

CONTINUOUS MONITORING

- ST Segments
- QT Intervals

Critical Baseline Settings:

- Heart Rate (upper / lower)
 - Keeps you informed of patient condition changes
 - Aids you in medication rate management (IV infusions, e.g.: Cardizem)
- ST-Segment (ACS)
- QT Interval (all patients, patients receiving QT prolonging medications)

Clinical Alarm Management Resources

 <u>American Journal of Critical Care – Monitoring</u> <u>Clinical Alarms</u>.

 <u>To download a sample CLINICAL ALARMS</u> <u>MONITORING POLICY and a CLINCIAL ALARMS</u> <u>PARAMETERS example, CLICK HERE. This will</u> <u>take you to my "PDF Downloads" page on my</u> <u>website.</u>

Sample ECG Alerts:

"ECG Alert Values:" When any of the following ECG disturbances are noted, a nurse should immediately assess the patient for hemodynamic compromise and determine need to activate Rapid Response. A STAT 12 Lead ECG should be obtained (unless Code Blue status), and the Physician should be notified.

- a. Acute change in heart rate <40 or greater than >130
- b. New QT Interval prolongation
- c. 2nd or 3rd Degree Heart Block
- d. Sinus Arrest with periods of Asystole ("Pause")
- e. New Onset Atrial Fibrillation or Atrial Flutter
- f. Premature Ventricular Contractions that are Multifocal, 2 or more coupled together, R on T, or greater than 6 per minute
- g. Ventricular Tachycardia or Wide QRS Tachycardia of unknown origin
- h. Torsades de Pointes*
- i. Ventricular Fibrillation or Asystole
- j. Pacemaker spikes without QRS (Failure to Capture)
- k. Changes in QRS width (new onset Bundle Branch Block)
- I. Changes to the J Point, ST Segment and/or T waves

Alarm Fatigue. It's REAL....

Excerpt from Circulation 2017:

ST-Segment alarms (9047) remained high and needed further follow-up interventions.⁴⁷ In 5 ICUs in a single hospital during a period of 31 days, Drew et al⁵⁰ reported that 91% of the 6196 alarms for ST-segment changes were considered nonactionable. Unfortunately, until this unacceptable rate of false and nonactionable alarms can be addressed, we can no longer give a COR I recommendation because false and nonactionable alarm signals distract the nurse, bother the patient, and desensitize clinicians to respond to alarms.47,49,50,55 ST-segment monitoring software in its current state

If the ST-Segment alarm activates, what should you do ??

If the ST-Segment alarm activates, what should you do ??

- Go assess the patient!
 - Are there any symptoms now present?
 - Changes in prior symptoms?
- Get a STAT 12 Lead ECG ! ... And

If the ST-Segment alarm activates, what should you do ??

Go assess the patient!

– Are there any symptoms now present?

- Changes in prior symptoms?

- Get a STAT 12 Lead ECG ! ... And
- Compare it to the last ECG(s)!

A CRITICAL INDICATOR of worsening ischemia and/or EARLY INFARCTION İS **DYNAMIC CHANGES** to the patient's J Points, ST-Segments and T Waves.

J ST T should never change

Dynamic ST-T wave changes . . .

Potential Issues ?

- Progressive
 Inferior
 ischemia
- 2. NSTEMI
- 3. Reciprocal
 ST Changes
 from
 Anterior
 STEMI

46 year old male

- Exertional dyspnea X "several weeks"
- Intermittent chest pressure X last 3 hours. Currently pain free.

46 year old male: ECG 1

 Chest pressure has returned, "5" on 1-10 scale. 2nd ECG obtained due to "change in symptoms":

ST-Segment Depression

7:59 am **8:08** am

Cath Lab Angiography:

SERIAL EKG CASE STUDY 1 - EKG #1 @ 06:22 HOURS

SERIAL EKG CASE STUDY 1 - EKG #2 @ 09:42 HOURS

DYNAMIC ST-T Wave Changes ARE PRESENT !!

NOW is the time for the **STAT CALL** to the CARDIOLOGIST !!!!

SERIAL EKG CASE STUDY 1 - EKG # 3 @ 12:12 HOURS

SERIAL EKG CASE STUDY 1 - EKG # 4 @ 15:37 HOURS

71

144

600/652

20 1

74

BPM

ms

ms

ms

160

Vent. rate PR interval QRS duration QT/QTc P-R-T axes Normal sinus rhythm Marked T wave abnor

Marked T wave abnormality, consider anterolateral ischemia

Prolonged QT

Abnormal ECG

SUB-TOTAL OCCLUSION OF LEFT ANTERIOR DESCENDING ARTERY

STENT DEPLOYMENT, LEFT ANTERIOR DESCENDING ARTERY, 33 y/o male

SUB-TOTAL OCCLUSION OF LEFT ANTERIOR DESCENDING ARTERY

POST PCI -LAD

Multiple patterns of ABNORMAL:

- J Point
- ST-Segment
- T Wave

configurations may indicate ACS.

Remember, "IF IT'S NOT NORMAL, it's ABNORMAL!"

BOOK PAGE: 83

- J POINT, ST SEGMENT, and T WAVE ABNORMALITIE			
FLAT or CONVEX J-T APEX SEGMENT	~/~	- Typical Cath Lab Coronary Artery T (TIMI Grade 1-2 b	Finding: hrombus blood flow)
HYPER-ACUTE T WAVE	$\sim \downarrow \! \land$	- HYPERKALEMIA - TRANSMURAL ISCHEMIA - ACUTE MI - HYPERTROPHY	
S-T SEGMENT ELEVATION at J POINT		- ACUTE MI - ACUTE PERICARDITIS / MYOCARDITIS - EARLY REPOLARIZATIO	DN
DEPRESSED J pt. DOWNSLOPING ST and INVERTED T		- ACUTE (NON-Q WAVE - ACUTE MI - (RECIPROCAL (- ISCHEMIA	E) MI Changes)

ECG Patterns associated with "EARLY PHASE MI:"

- J-T Apex abnormalities
- Hyper-Acute T Waves
- Dynamic ST-T Wave Changes

WHEN EVALUATING for ST SEGMENT ELEVATION

From: AMERICAN HEART ASSOCIATION ACLS 2005 REVISIONS

During NORMAL STATES of PERFUSION, the J POINT is ISOELECTRIC and the ST SEGMENT has a

CONCAVE appearance. When measured 40 ms beyond the J POINT (noted by the RED DOT), the ST SEGMENT elevation is less than 1mm.

Both figures were recorded from a 54 year old male while resting (figure A), and during

PTCA of the Left Anterior Descending artery (figure B).

fig A

fig B

assumes a CONVEX shape. When measured 40 ms beyond the J POINT, the ST segment is elevated > 1 mm. This phenonemon is seen routinely in the cath lab prior to the occurance of ST ELEVATION at the J POINT during PTCA and STENTING.

ABNORMAL J-T APEX SEGMENT

ABNORMAL J-T APEX SEGMENT

1 yr. PRIOR TO MI NORMAL EKG CONCAVE J - T APEX SEGMENT

CHIEF COMPLAINT and SIGNIFICANT HISTORY:

56 y/o MALE presents to ED with complaint of "INTERMITTENT SUBSTERNAL & SUB-EPIGASTRIC PRESSURE" x 3 HOURS. PMHx of ESOPHAGEAL REFLUX. NO other significant past medical history.

RISK FACTOR PROFILE:

FAMILY HISTORY - father died of MI at age 62
PREVIOUS CIGARETTE SMOKER - quit 15 years ago.
CHOLESTEROL - DOES NOT KNOW; "never had it checked."
OBESITY

PHYSICAL EXAM: Patient supine on exam table, mildly anxious, currently complaining of "mild indigestion," skin is warm, pale, dry; REST OF EXAM is UNREMARKABLE.

VITAL SIGNS: BP 142/94, P 80, R 20, SAO2 98%

LABS: JUST OBTAINED, RESULTS NOT AVAILABLE YET.

56 yr		Vent. rate	80	BPM
Male	Caucasian	PR interval	154	ms
		QRS duration	78	ms
Room:A9		QT/QTc	380/438	ms
Loc:3	Option:23	P-R-T axes	51 -24	38

**UNEDITED COPY – REPORT IS COMPUTER GENERATED ONLY, WITHOUT PHYSICIAN INTERPRETATION

Normal sinus rhythm Normal ECG No previous ECGs available

Technician: W Ruppert

ECG COMPUTER DOES NOT NOTICE THE CONVEX J-T APEX SEGMENTS !

380/438 1	ns Normal EC	Normal ECG	
51 -24	No previou	is ECGs available	

CASE STUDY: 56 y/o male with INTERMITTENT "CHEST HEAVINESS"

TREATMENT PLAN : EMERGENCY CORONARY ARTERY BYPASS SURGERY (4 VESSEL)

T waves should not be HYPERACUTE

HYPERACUTE T Waves may indicate:

- Early phase Acute MI
- Transmural ischemia (usually seen in one region of the ECG)
- Hyperkalemia (seen globally across ECG)
- Hypertrophy

HYPERACUTE T WAVES

HYPERACUTE

BOOK PAGE: 88

SUB-TOTAL OCCLUSION OF PROXIMAL LAD

Helpful Clue: Hyper-Acute T Waves

 GLOBAL Hyper-acute T Waves (in leads viewing multiple myocardial regions / arterial distributions) favors HYPERKALEMIA

Helpful Clue: Hyper-Acute T Waves

- GLOBAL Hyper-acute T Waves (in leads viewing multiple myocardial regions / arterial distributions) favors HYPERKALEMIA
- Hyper-acute T Wave noted in ONE ARTERIAL DISTRIBUTION (Anterior / Lateral / Inferior) favors TRANSMURAL ISCHEMIA / Early Phase Acute MI

CHIEF COMPLAINT and SIGNIFICANT HISTORY:

30 y/o male presents to ER via EMS, c/o sudden onset of dull chest pain x 40 min. Pain level varies, not effected by position, movement or deep inspiration. No associated symptoms.

RISK FACTOR PROFILE: NONE. CHOLESTEROL UNKNOWN.

PHYSICAL EXAM: Patient is supine on exam table, CAO x 4, anxious, restless, skin pale, cool, dry. Patient c/o chest pressure, "7" on 1 - 10 scale, uneffected by position, movement, deep inspiration. Lungs clear. HS: NL S1, S2, no rubs, murmurs, gallops

VITAL SIGNS: BP 136/88 P 90 R 20 SA02 98%

DIAGNOSTIC TESTING: 1st TROPONIN I - ultra: <0.07

Cath Lab findings:

ECG CRITERIA for DIAGNOSIS of STEMI:

(ST ELEVATION @ J POINT)

*LEADS V2 and V3:

MALES AGE 40 and up ----- 2.0 mm

(MALES LESS THAN 40----- 2.5 mm)

FEMALES ----- 1.5 mm

ALL OTHER LEADS: 1.0 mm or more,

1.0 mm or more, in TWO or more CONTIGUOUS LEADS

* P. Rautaharju et al, "<u>Standardization and Interpretation</u> <u>of the ECG</u>," JACC 2009;(53)No.11:982-991

STEMI Criteria for 18 Lead ECGs:

Right-Sided Chest Leads (V3R – V6R): <u>0.5</u> mm

Posterior Chest Leads (V7 – V9): <u>0.5</u> mm

* P. Rautaharju et al, "<u>Standardization and Interpretation</u> of the ECG," JACC 2009;(53)No.11:982-991

Abnormal ST Elevation Criteria: ACC/AHA 2009 "Standardization and Interpretation of the ECG, Part VI

Acute Ischemia and Infarction," Galen Wagner, et al

Recommendations

- 1. For men 40 years of age and older, the threshold value for abnormal J-point elevation should be 0.2 mV (2 mm) in leads V₂ and V₃ and 0.1 mV (1 mm) in all other leads.
- 2. For men less than 40 years of age, the threshold values for abnormal J-point elevation in leads V_2 and V_3 should be 0.25 mV (2.5 mm).
- 3. For women, the threshold value for abnormal J-point elevation should be 0.15 mV (1.5 mm) in leads V_2 and V_3 and greater than 0.1 mV (1 mm) in all other leads.
- 4. For men and women, the threshold for abnormal J-point elevation in V_3R and V_4R should be 0.05 mV (0.5 mm), except for males less than 30 years of age, for whom 0.1 mV (1 mm) is more appropriate.
- 5. For men and women, the threshold value for abnormal Jpoint elevation in V_7 through V_9 should be 0.05 mV (0.5 mm).
- 6. For men and women of all ages, the threshold value for abnormal J-point depression should be -0.05 mV (-0.5 mm) in leads V₂ and V₃ and -0.1 mV (-1 mm) in all other leads.

ST SEGMENT ELEVATION:

S-T SEGMENTS ELEVATE WITHIN SECONDS OF CORONARY ARTERY OCCLUSION:

IN THIS CASE, a normal response to balloon occlusion of the RIGHT CORONARY ARTERY during PTCA in the CARDIAC CATH LAB

3 COMMON PATTERNS of ST SEGMENT ELEVATION From ACUTE MI:

DOWNSLOPING S-T SEGMENT

FLAT S-T SEGMENT UPSLOPING S-T SEGMENT

ST SEGMENT ELEVATION in ACUTE MI:

The following samples are from patients with ACUTE MI, as confirmed by discovery of total arterial occlusion in the Cardiac Cath Lab:

Reciprocal S-T Segment Depression *may* or *may not* be present during STEMI.

Reciprocal S-T Segment Depression *may* or *may not* be present during STEMI.

The presence of S-T Depression on an EKG which exhibits significant S-T elevation is a fairly reliable indicator that STEMI is the diagnosis. Reciprocal S-T Segment Depression *may* or *may not* be present during STEMI.

The presence of S-T Depression on an EKG which exhibits significant S-T elevation is a fairly reliable indicator that STEMI is the diagnosis.

However the *lack of Reciprocal S-T Depression* DOES NOT rule out STEMI.

ACUTE MI

COMPLICATIONS TO ANTICIPATE FOR ALL MI PATIENTS :

FAILURE OF STRUCTURE(S) SERVED BY THE BLOCKED ARTERY

• Correlation of ECG Leads with Coronary Arterial Anatomy and the STRUCTURES SERVED by the OCCLUDED ARTERY

 Correlation of ECG Leads with Coronary Arterial Anatomy and the STRUCTURES SERVED by the OCCLUDED ARTERY

.... Will serve as a "crystal ball," allowing you to ANTICIPATE complications of STEMI

STEII

 Correlation of ECG Leads with Coronary Arterial Anatomy and the STRUCTURES SERVED by the OCCLUDED ARTERY

..... Will serve as a "crystal ball," allowing you to ANTICIPATE complications of STEMI BEFORE they occur !!

to understanding the PHYSIOLOGICAL CHANGES that occur during ACUTE MI."

"an INVALUABLE ASSET for ALL MEDICAL PROFESSIONALS who provide direct care to STEMI patients !"

INTERPRET THE EKG, THEN:

IDENTIFY THE AREA OF THE HEART WITH A PROBLEM . . . RECALL THE ARTERY WHICH SERVES THAT REGION . . . RECALL OTHER STRUCTURES SERVED BY THAT ARTERY ... ANTICIPATE FAILURE OF THOSE STRUCTURES . . . • INTERVENE APPROPRIATELY! STEMI Case Studies, excerpts from "12 Lead **ECG Interpretation in ACS** with Case Studies from the Cardiac Cath Lab."

CASE STUDY 1 - STEMI

CHIEF COMPLAINT and SIGNIFICANT HISTORY:

72 y/o male, c/o CHEST "HEAVINESS," started 20 minutes before calling 911. Pain is "8" on 1-10 scale, also c/o mild shortness of breath. Has had same pain "intermittently" x 2 weeks.

RISK FACTOR PROFILE:

FAMILY HISTORY - father died of MI at age 77
FORMER CIGARETTE SMOKER - smoked for 30 year - quit 27 years ago
DIABETES - oral meds and diet controlled
HIGH CHOLESTEROL - controlled with STATIN meds
AGE: OVER 65

PHYSICAL EXAM: Patient calm, alert, oriented X 4, skin cool, dry, pale. No JVD, Lungs clear bilaterally. Heart sounds normal S1, S2. No peripheral edema.

VITAL SIGNS: BP: 100/64, P: 75, R: 20, SAO2: 94%

LABS: FIRST TROPONIN: 6.4

72 yr Male	Caucasian	Vent. rate	75	BPM	Normal sinus rhythm	
Wale	Caucasian	QRS duration	98	ms	*** ** ** ** ACUTE MI ** ** **	ST SEGMENT ELEVATION
Loc:	Option:2	P-R-T axes	72 13	Abnormal ECG		

Note: There is NO Reciprocal ST Depression on this STEMI ECG !

72 yr		Vent. rate	75	BPM	
Male	Caucasian	PR interval	162	ms	
		QRS duration	98	ms	
		QT/QTc	382/426	ms	
Loc:	Option:2	P-R-T axes	72 13	83	

Normal sinus rhythm	
Anteroseptal infarct, possibly acute *** ** ** ** ACUTE MI ** ** **	
Abnormal ECG	

ST SEGMENT ELEVATION

V1 - V4 VIEW THE ANTERIOR-SEPTAL WALL of the LEFT VENTRICLE

V1, V2 - ANTERIOR / SEPTAL V3, V4 - ANTERIOR

OCCLUSION of MID - LEFT ANTERIOR DESCENDING ARTERY

LAD DISTRIBUTION

35-45% of LV MUSCLE MASS

9

FUNCTION Α **BLOCKAGE** OF THE LAD CAN RESULT IN * CARDIOGENIC SHOCK LV PUMP FAILURE --**PULMONARY EDEMA**

LEFT ANTERIOR DESCENDING ARTERY (LAD)

- ANTERIOR WALL OF LEFT VENTRICLE
- 35-45% OF LEFT VENTRICLE MUSCLE MASS
 - SEPTUM, ANTERIOR 2/3
 - **BUNDLE BRANCHES**
 - ANTERIOR-MEDIAL PAPILLARY MUSCLE

ANTICIPATED COMPLICATIONS of ANTERIOR-SEPTAL WALL STEMI & POSSIBLE INDICATED INTERVENTIONS:

- CARDIAC ARREST	BCLS / ACLS
- CARDIAC DYSRHYTHMIAS (VT / VF)	ACLS (antiarrhythmics)
- PUMP FAILURE with	INOTROPE THERAPY:
CARDIOGENIC SHOCK	-DOPAMINE / DOBUTAMINE /
	LEVOPHED
	- INTRA-AORTIC BALLOON PUMP
	(use caution with fluid challenges
	due to PULMONARY EDEMA)
- PULMONARY EDEMA	- CPAP
	- ET INTUBATION
	(use caution with dieuretics due to
	pump failure and hypotension)
- 3rd DEGREE HEART BLOCK - NOT	TRANSCUTANEOUS or
RESPONSIVE TO ATROPINE	TRANSVENOUS PACING

POST PTCA/STENT TO MID LAD

CASE STUDY 2: STEMI

CHIEF COMPLAINT and SIGNIFICANT HISTORY:

46 y/o Female walks into ED TRIAGE, with chief complaint of EPIGASTRIC PAIN, NAUSEA and WEAKNESS. Symptoms have been intermittent for last two days. She was awakened early this morning with the above symptoms, which are now PERSISTENT.

RISK FACTOR PROFILE:

FAMILY HISTORY - father died of CAD, older brother had CABG, age 39 DIABETES - diet controlled HYPERTENSION

PHYSICAL EXAM: Pt. CAOx4, anxious, SKIN cold, clammy, diaphoretic. No JVD. Lungs: clear, bilaterally. Heart Sounds: Normal S1, S2.

VITAL SIGNS: BP: 168/98, P: 110, R: 24, SAO2: 97% on O2 4 LPM via nasal canula

LABS: TROPONIN ultra = 2.8

46 yr	Vent. rate	109	BPM
Female	PR interval	132	ms
	QRS duration	82	ms
Room:ER	QT/QTc	346/465	ms
	P-R-T axes	60 11	-32

Sinus tachycardia Left ventricular hypertrophy with repolarization abnormality ST elevation consider lateral injury or acute infarct

*** ** ** ** * ACUTE MI ** ** ** **

LEADS I and aVL view the ANTERIOR-LATERAL JUNCTION

OCCLUSION of RAMUS ARTERY

OCCLUSION of OBTUSE MARGINAL ARTERY

CASE PROGRESSION: As the patient was being prepared for transport to the Cardiac Cath Lab, she experienced an episode of Ventricular Fibrillation.

CASE STUDY 3: STEMI

CHIEF COMPLAINT and SIGNIFICANT HISTORY:

29 y/o male presents to the ER c/o "HEAVY CHEST PRESSURE" x 30 minutes. The patient states he was playing football with friends after eating a large meal. Pt. also c/o nausea. Denies DIB.

RISK FACTOR PROFILE:

- FAMILY HISTORY father died of MI age 46
- CURRENT CIGARETTE SMOKER
- "MILD" HYPERTENSION untreated
- CHOLESTEROL unknown "never had it checked."

PHYSICAL EXAM: Patient alert, oriented X 4, skin cool, dry, pale. Patient restless. No JVD, Lungs clear bilaterally. Heart sounds normal S1, S2. No peripheral edema.

VITAL SIGNS: BP: 104/78, P: 76, R: 20, SAO2: 96%

LABS: INITIAL CARDIAC MARKERS - NEGATIVE

Reciprocal ST Depression is NOW PRESENT Additional ST Elevation is

present in Leads I, AVL

OCCLUSION of MID - LEFT ANTERIOR DESCENDING ARTERY

OCCLUSION of PROXIMAL LEFT ANTERIOR DESCENDING ARTERY

OCCLUSION of PROXIMAL LEFT ANTERIOR DESCENDING ARTERY

ANTICIPATED COMPLICATIONS of ANTERIOR-SEPTAL WALL STEMI & POSSIBLE INDICATED INTERVENTIONS:

- CARDIAC ARREST	BCLS / ACLS
- CARDIAC DYSRHYTHMIAS (VT / VF)	ACLS (antiarrhythmics)
- PUMP FAILURE with	INOTROPE THERAPY:
CARDIOGENIC SHOCK	-DOPAMINE / DOBUTAMINE /
	LEVOPHED
	- INTRA-AORTIC BALLOON PUMP
	(use caution with fluid challenges
	due to PULMONARY EDEMA)
ΟΙ ΙΙ ΜΟΝΙΛΟΥ ΕΝΕΜΙΛ	
	- LI INTODATION
	(use caution with dieuretics due to
	pump failure and hypotension)
- 3rd DEGREE HEART BLOCK - NOT	TRANSCUTANEOUS or
RESPONSIVE TO ATROPINE	TRANSVENOUS PACING

WHILE AWAITING THE CATH LAB TEAM, THE PATIENT BEGAN VOMITING. SKIN BECAME ASHEN & DIAPHORETIC. REPEAT BP = 50/30.

WHILE AWAITING THE CATH LAB TEAM, THE PATIENT BEGAN VOMITING. SKIN BECAME ASHEN & DIAPHORETIC. REPEAT BP = 50/30. -WHAT THERAPEUTIC INTERVENTIONS SHOULD BE IMPLMENTED AT THIS POINT ?

PROXIMAL OCCLUSION of the LEFT ANTERIOR DESCENDING Artery

> POST PTCA _____ and STENT to the PROXIMAL LAD

CASE STUDY 7 - STEMI

CHIEF COMPLAINT and SIGNIFICANT HISTORY:

46 yr. old MALE arrives in ER, C/O SUDDEN ONSET OF CHEST PRESSURE 45 MINUTES AGO. PAIN IS CONSTANT, PRESSURE-LIKE, AND NOT EFFECTED BY POSITION, MOVEMENT or DEEP INSPIRATION. ALSO C/O D.I.B.

RISK FACTOR PROFILE:

HIGH LDL CHOLESTEROL

PHYSICAL EXAM: Patient is alert & oriented x 4, skin warm, dry, color normal. Non-anxious Lungs clear, normal S1, S2. No JVD, No ankle edema.

VITAL SIGNS: BP: 136/88 P: 88 R: 20 SAO2: 100% on 4 LPM O2

LABS: TROPONIN: < .04

- 🎗 —> HELPFUL HINT ... MEMORIZE THIS ! 🔶 **RIGHT CORONARY ARTERY (RCA)** HT DOMINANT SYSTEMS RIGHT ATRIUM SINUS NODE (55% of the population) RIGHT VENTRICLE - 100 % of muscle mass LEFT VENTRICLE: 15 - 25 % of muscle mass - INFERIOR WALL - approx. 1/2 of POSTERIOR WALL AV NODE

A standard

12 LEAD EKG

Does NOT show the

RIGHT VENTRICLE

To see the RIGHT VENTRICLE ...

... such as in cases of INFERIOR WALL M.I.

@ You must do a RIGHT - SIDED EKG!!

V4R - V6R VIEW THE RIGHT VENTRICLE

LEAD PLACEMENT V4R, V5R, V6R

V4R V5R -

V6R

V4

V3

V2

V1

INFERIOR - RIGHT VENTRICULAR MI

ANTICIPATED COMPLICATIONS of INFERIOR WALL STEMI secondary to RCA Occlusion & POSSIBLE INDICATED INTERVENTIONS:

- CARDIAC ARREST	BCLS / ACLS
- CARDIAC DYSRHYTHMIAS (VT / VF)	ACLS (antiarrhythmics)
- SINUS BRADYCARDIA	ATROPINE 0.5mg, REPEAT as needed UP TO 3mg. (follow ACLS and/or UNIT protocols)
- HEART BLOCKS (1st, 2nd & 3rd Degree HB)	ATROPINE 0.5mg, REPEAT as needed UP TO 3mg, Transcutaneous Pacing, (follow ACLS and/or UNIT protocols)
- RIGHT VENTRICULAR MYOCARDIAL INFARCTION	 The standard 12 Lead ECG does NOT view the Right Ventricle. You must do a RIGHT-SIDED ECG to see if RV MI is present. Do NOT give any Inferior Wall STEMI patient NITRATES or DIURETICS until RV MI has been RULED OUT.
- POSTERIOR WALL INFARCTION	 POSTERIOR WALL MI presents on the 12 Lead ECG as ST DEPRESSION in Leads V1 - V3. POSTERIOR WALL MI is NOT PRESENT ON THIS ECG.

If this patient becomes HYPOTENSIVE

IN EVERY CASE of

INFERIOR WALL STEMI

You must first *RULE OUT* **RIGHT VENTRICULAR MI BEFORE** giving any:

- NITROGLYCERIN
- Diuretics

Nitroglycerin & Diuretics are **CLASS III CONTRINDICATED** in **RIGHT VENTRICULAR MI ! !* They precipitate SEVERE HYPOTENSION**

* A.H.A. ACLS 2010/2015

STEIR ASSISTANC: an Emergency Crash Cart Interactive Reference Manual - free Download

STEMI Assistant – Information Video

S-T SEGMENT DEPRESSION - COMMON ETIOLOGIES:

CONDITION:

- RECIPROCAL CHANGES of ACUTE MI
- NON-Q WAVE M.I. (NON-STEMI)
- ISCHEMIA
- POSITIVE STRESS TEST
- VENTRICULAR HYPERTROPHY (STRAIN PATTERN)
- WOLFF-PARKINSON-WHITE
- OLD MI (NECROSIS vs. ISCHEMIA)
- DIGITALIS
- R. BUNDLE BRANCH BLOCK

ST Depression in Leads V1 – V4:

Direct view of ISCHEMIA (anterior wall)

- Direct view of ISCHEMIA (anterior wall)
- Direct view of NSTEMI (anterior wall)

Non-STEMI (NSTEMI)

Non-ST Segment Elevation Myocardial Infarction. "sub-endocardial MI" . . . "partial wall thickness"

STEMI

ST Segment Elevation Myocardial Infarction.

- Direct view of ISCHEMIA (anterior wall)
- Direct view of NSTEMI (anterior wall)
- Reciprocal view of STEMI (opposite side of heart - posterior wall)

Posterior Wall STEMI....

 Does not show ST elevation on standard 12 lead ECG because NONE of the 12 leads view the Posterior Wall directly....

If we put ECG leads on the BACK of a PATIENT who is having an ACUTE POSTERIOR WALL MI.....

Whenever you see **STDEPRESSION** in Leads V1 - V4

you must do a **POSTERIOR LEAD ECG** (V7 - V9)

to see if you Patient is having a POSTERIOR WALL STEM

Whenever your patient's ECG exhibits ST DEPRESSION in any of the ANTERIOR LEADS (V1-V4), CONSIDER the possibility of POSTERIOR WALL STEMI !!

... To DIGANOSE Posterior Wall STEMI, we should see LEADS V7 – V9 !!

POSTERIOR WALL BLOOD SUPPLY

Congrats!!

YOU SURVIVED !!!!

<u>???</u>