Bayfront Health Hospitals

Bayfront Health Seven Rivers, Crystal River, FL

Bayfront Health Brooksville, Brooksville, FL

Seven Rivers Freestanding ED, Citrus Hills, FL

Bayfront Health Spring Hill, Spring Hill, FL

The Lifesaving 12 Lead ECG: Part 1

Wayne W Ruppert, CVT, CCCC, NREMT-P Regional Director of Clinical Outreach & Cardiovascular Accredited Programs: Chest Pain Center, Heart Failure

Welcome!

49 year old male - "Crushing chest pressure" . . .

49 year old male - "Crushing chest pressure" . . .

Wayne Ruppert - Bio:

- Cardiovascular Coordinator 2012-present (coordinated 4 successful accreditations)
- Interventional Cardiovascular / Electrophysiology Technologist, 1995-Present. (Approx 13,000 patients)
- Author of: "<u>12 Lead ECG Interpretation in Acute</u> <u>Coronary Syndrome with Case Studies from the Cardiac</u> <u>Cath Lab</u>," 2010, TriGen publishing / Ingram Books
- Author of: "<u>STEMI Assistant</u>," 2014, TriGen publishing / Ingram Books
- Florida Nursing CE Provider # 50-12998
- 12 Lead ECG Instructor, 1994-present (multiple hospitals, USF College of Medicine 1994)
- Website: <u>www.ECGtraining.org</u>

Source of Curriculum:

 Case Studies from Cardiac Catheterization and Electrophysiology Labs, 1996 – Present

13,000 – 15,000 EP and Cath Lab cases between 1996 - Today

Wayne Ruppert and Dr. James Irwin, St Joseph's Hospital, Tampa, 7/29/2004

Cardiac Cath Lab Advantage:

Correlation of ECG leads with SPECIFIC cardiac anatomic structures.

Electrophysiology Lab Case Studies

EP Catheters within the heart used for obtaining the <u>Electrogram</u> (the "internal ECG") Tracing and for Pace-mapping, an integral component of an EP study Author Wayne Ruppert conducting Pacemapping during EP study at the St Joseph's Hospital Heart Institute, Pediatric Electrophysiology Program, Tampa, FL in 2004

EP Lab Advantage:

Correlation of ECG derived diagnosis with true intra-cardiac electrogram acquired diagnosis.

Source of Curriculum:

- Case Studies from Cardiac Catheterization and Electrophysiology Labs, 1996 – Present
- Current Evidence-based Research
 - Journal of the American College of Cardiology (JACC)
 - American Heart Association (AHA) Circulation
 - ACC/AHA Guidelines
 - New England Journal of Medicine

Source of Curriculum:

- Case Studies from Cardiac Catheterization and Electrophysiology Labs, 1996 – Present
- Current Evidence-based Research
 - Journal of the American College of Cardiology (JACC)
 - American Heart Association (AHA) Circulation
 - ACC/AHA Guidelines
 - New England Journal of Medicine
- Two peer reviewed, published textbooks

In the CARDIAC CATHETERIZATION LAB, we read our patients' 12 Lead ECGs and then evaluate their coronary arteries and ventricular function during angiography. Stated in plain English, we republy learn how to correlate 12 lead ECG findings with what's really going on inside our patients' hearts. Seeing ECGs from this perspective adds a new dimension to understanding the complex pathophysiologies of cardiovascular disease.

This book prepares you to:

- INTERPRET 12 Lead ECGs.
- ASSIMILATE DATA derived from the 12 Lead ECG into a comprehensive patient evaluation process
 designed to maximize diagnostic accuracy, while taking into consideration the 12 Lead ECGs inherent
 LACK of SENSITIVITY and SPECIFICITY.
- IDENTIFY 13 PATTERNS associated with myocardial ischemia and infarction, including the most subtle ECG changes often missed by clinicians and the ECG machine's computerized interpretation software.
- CORRELATE each lead of the ECG with specific regions of the heart and the CORONARY ARTERIAL DISTRIBUTION that commonly supplies it. In cases of STEMI, this knowledge prepares you to ANTICIPATE the FAILURE OF CRITICAL CARDIAC STRUCTURES – often BEFORE THEY FAIL.

For those who need to master essential material quickly, this book has been written with an expedited learning" feature, designed to make learning as easy as 1 2 3:

- 1. READ the YELLOW HIGHLIGHTED TEXT
- 2. STUDY the GRAPHIC IMAGES, PICTURES and ECGs
- 3. CORRECTLY ANSWER the REVIEW QUESTIONS at the end of each section.

This is an invaluable resource for every medical professional who evaluates patients and reads their 12 lead ECGs:

- Fellows in Emergency, Cardiology, and Family Medicine
- Medical Residents
- Veteran Physicians wanting a good review in ACS patient evaluation
- Physician Assistants and Nurse Practitioners
- Emergency Department Nurses
- Coronary Care Unit and Cardiac Telemetry Nurses
- Walk-in Clinic Physicians and Nurses
- Paramedics

"I think this book will be a wonderful addition to the textbooks that are already available, with a fresh perspective"

Joseph P. Ornato, MD, FACP, FACC, FACEP

- Professor and Chairman, Department of Emergency Medicine
- Medical College of Virginia/Virginia Commonwealth University
- Medical Director, Richmond Ambulance Authority,
- Richmond, Virginia

"This book integrates academic ECG principles with real-world clinical practice by incorporation of well chosen cath lab case studies into its curriculum. This combination lets readers see patients and their ECGs through the eyes of an experienced cath lab Interventionalist, and provides a balanced approach to patient evaluation that compensates for the ECGs inherent lack of sensitivity and specificity. I highly recommend this book for all Emergency Medicine and Cardiology Fellows. For experienced clinicians, it's a superb review."

Humberto Coto, MD, FACP, FACC

- Chief of Interventional Cardiology
- St. Joseph's Hospital
- Tampa, Florida

THE CATH LAB SERIES presents

12 LEAD

ECG

INTERPRETATION

5

ACUTE

CORONARY

SYNDROME

with

CASE

STUDIES

from

the

CATH

AB

2

WAYNE RUPPERT

200

with CASE STUDIES from the

SYNDROME

ACUTE

CORONARY =

CARDIAC CATHETERIZATION LAB

WAYNE W RUPPERT

Barnes and Noble

TEXTBOOK REVIEWED BY:

Joseph P. Ornato, MD, FACP, FACEP, FACC, Professor and Chairman, Department of Emergency Medicine, Medical College of Virginia-Virginia Commonwealth University

Humberto Coto, MD, FACP, FACC, Chief of Cardiology, St. Joseph's Hospital

Matthew Glover, MD, FACP, FACC, Interventional Cardiologist, St. Joseph's Hospital

Xavier Prida, MD, FACP, FACC, Interventional Cardiologist, St. Joseph's Hospital

<u>Charles Sand, MD, FACP, FACEP</u>, Emergency Department Physician, St. Joseph's Hospital

Printed and Marketed Worldwide by The Ingram Book Company 2010 - Current

by Wayne Ruppert

UNIVERSAL ACS PATIENT MANAGEMENT ALGORITHM --- See PAGE ONE ---

Select LEAD SET with HIGHEST ST ELEVATION and open to associated page ...

www.TriGenPress.com www.ECGtraining.org BarnesandNoble.com Amazon.com

TEXTBOOK REVIEWED BY:

Barbra Backus, MD, PhD Inventor of "The HEART Score," University Medical Center, Utrech, Netherlands

Michael R. Gunderson, National Director, Clinical and Health IT, American Heart Association

<u>Anna Ek, AACC, BSN, RN</u> Accreditation Review Specialist, The American College of Cardiology

William Parker, PharmD, CGP, Director of Pharmacy, Bayfront Dade City

Printed and Marketed Worldwide by The Ingram Book Company 2010 - Current

Tutorial Video

Free download – electronic copy (PDF file)

Copyright 2010, 2015, 2018

All cardiovascular subject-related images, graphics and diagrams in this PowerPoint were created by the author, Wayne Ruppert, and have been taken from his two published textbooks, "STEMI Assistant" and "12 Lead ECG Interpretation in ACS with Case Studies from the Cardiac Cath Lab," which are Copyright protected. No content may be removed from this PowerPoint presentation, nor may this presentation or any component thereof be used without written consent from the author.

Wayne.ruppert@bayfronthealth.com

COURSE PRE-REQUISITE:

You should already have Basic Single-Lead ECG Rhythm Strip Interpretation Skills.

THIS COURSE IS NOT A BASIC ECG RHYTHMS **COURSE.** If you are not already reasonably comfortable with interpreting and understanding basic ECG dysrhythmias (i.e.: heart blocks, A-Fib, V-Tach, etc.) we DO NOT recommend that you attend this workshop; instead we recommend our "Basic ECG **Rhythms Workshop.**"

Is a condensed curriculum focused on acute conditions which are associated with a high degree of morbidity and mortality:

Is a condensed curriculum focused on acute conditions which are associated with a high degree of morbidity and mortality:

- **1. Acute Coronary Syndromes**
 - STEMI (pre-infarction, acute & evolving / old MI)
 - NSTEMI
 - Unstable Angina
 - Low Risk Chest Pain

Is a condensed curriculum focused on acute conditions which are associated with a high degree of morbidity and mortality:

- 2. Sudden Cardiac Death Syndromes
 - Long QT Syndrome (Congenital & Drug Induced)
 - Brugada Syndrome
 - Cardiomyopathy (Hypertrophic and other)
 - Arrhythmogenic Right Ventricular Dysplasia
 - Wolff-Parkinson-White Syndrome
 - Catecholinergic Polymorphic Ventricular Tachy.

To get the most from this class:

Do not try to write down or memorize every point.

To get the most from this class:

- Do not try to write down or memorize every point.
- DOWNLOAD this PowerPoint in its entirety review and study it at you own pace.

To get the most from this class:

- Do not try to write down or memorize every point.
- DOWNLOAD this PowerPoint in its entirety review and study it at you own pace.
- For now Simply LISTEN to everything that is said. If it "makes sense," then you're learning.

To get the most from this class:

- Do not try to write down or memorize every point.
- DOWNLOAD this PowerPoint in its entirety review and study it at you own pace.
- For now Simply LISTEN to everything that is said. If it "makes sense," then you're learning.
- In other words, "just go along for the ride."

Session 1 (morning session) Contents:

- Introduction and The ECG in Perspective
- Risk Stratification: The HEART Score
- Essential Cardiac A & P
 - Cellular (depolarization / repolarization)
 - Structural
- Heart Sounds and Valvular Function

Session 1 Contents, continued:

- Bypass Tract Pathophysiology
- ECG Principles
- Coronary Artery Anatomy and Correlation with the 12 Lead ECG
- Waveforms and Intervals
- Bundle Branch Blocks
- Axis Deviation and Rotation

Session 2 (afternoon session) Contents:

- Sudden Cardiac Death Syndromes
 - Long QT
 - Hypertrophic Cardiomyopathy
 - Arrythmogenic Right Ventricular Cardiomyopathy
 - Brugada Syndrome
- Application of The HEART Score
- Acute Coronary Syndromes With Cath Lab Case Studies

Helpful Web Resources:

www.practicalclinicalskills.com

www.skillstat.com/tools/ecg-simulator

www.ECGtraining.org

The EKG in PERSPECTIVE

- Much development in the 1950s and 60s, and at that time, EKGs were the primary diagnostic tool.
- 2. Today we have better diagnostic tools (e.g. ECHO, CARDIAC CATH, EP STUDIES) that sometimes conflict with traditional EKG-made diagnoses.
- 3. Some EKG findings are more accurate and reliable than others .

Sometimes, ECGs LIE to us !
ECGs and USED CAR SALESMEN often have MUCH in common !

The EKG in PERSPECTIVE **PROBLEMS WITH EKGs...** \downarrow SENSITIVITY FALSE NEGATIVES ↓ SPECIFICITY FALSE POSITIVES AND . . .

S-T SEGMENT ELEVATION - COMMON ETIOLOGIES:

CONDITION:

- ACUTE INFARCTION
- HYPERKALEMIA
- BRUGADA SYNDROME
- PULMONARY EMBOLUS
- INTRACRANIAL BLEED
- MYOCARDITIS / PERICARDITIS
- L. VENT. HYPERTROPHY
- PRINZMETAL'S ANGINA
- L. BUNDLE BRANCH BLOCK
- PACED RHYTHM
- EARLY REPOLARIZATION & "MALE PATTERN" S-T ELEV.

ST-Segment Elevation in Normal Circumstances and in Various Conditions

Table 1. ST-Segment Elevation in Conditions.	Normal Circumstances and in Various
Condition	Features
Normal (so-called male pattern)	Seen in approximately 90 percent of health young men; therefore, normal Elevation of 1–3 mm Most marked in V ₂ Concave
Early repolarization	Most marked in V ₄ , with notching at J poin Tall, upright T waves Reciprocal ST depression in aVR, not in aVL, when limb leads are involved
ST elevation of normal variant	Seen in V ₃ through V ₈ with inverted T wave Short QT, high QRS voltage
Left ventricular hypertrophy	Concave Other features of left ventricular hypertrophy
Left bundle-branch block	Concave ST-segment deviation discordant from the QRS
Acute pericarditis	Diffuse ST-segment elevation Reciprocal ST-segment depression in aVR, not in aVI. Elevation seldom >5 mm PR-segment depression
Hyperkalemia	Other features of hyperkalemia present: Widened QRS and tall, peaked, tented T waves Low-amplitude or absent P waves ST segment usually downsloping
Brugada syndrome	rSR' in V1 and V2 ST-segment elevation in V1 and V2, typically downsloping
Pulmonary embolism	Changes simulating myocardial infarction seen often in both inferior and antero- septal leads
Cardioversion	Striking ST-segment elevation, often >10 mm, but lasting only a minute or two immediately after direct-current shock
Prinzmetal's angina	Same as ST-segment elevation in infarction, but transient
Acute myocardial infarction	ST segment with a plateau or shoulder or upsloping Reciprocal behavior between aVL and III

77 Years Male

7/2/2015 9:44:46

and when when we want

- Min

28

Patient:

- Asymptomatic
- Troponin normal
- Cardiac Cath angiography = "no obstructive CAD."
- Discharge diagnosis:

EARLY REPOLARIZATION. This degree of ST Elevation in early repolarization is VERY RARE: The only such ECG I have seen in approximately 13,000 cardiac catheterizations.

SUB-TOTAL OCCLUSION of LEFT MAIN CORONARY ARTERY

> CRITICAL LESIONS -RIGHT CORONARY ARTERY

"From time to time, the EKG – derived diagnosis will be TOTALLY INCORRECT."

Despite the ECG's problematic issues with Lack of Sensitivity & Lack of Specificity, The 12 Lead ECG remains one of our QUICKEST, most costefficient front-line Triage Tools that we have today.

REMEMBER Keep the ECG Results in PROPER PERSPECTIVE

So how do we know when the ECG is telling us the truth ???

 We utilize ACS Risk Stratification to compensate for the ECG's lack of sensitivity and specificity, to aid us in clinical decisionmaking and to improve our diagnostic accuracy.

The ECG . . .

HEAR	T score for chest pain pa	tients	
History	Highly suspicious	2	
	Moderately suspicious	1	
-	Slightly suspicious	0	
ECG	ECG Significant ST-deviation		
	Non specific repolarisation	4	
	disturbance / LBTB / PM	1	
	Normal	0	
Age	≥ 65 years	2	
	> 45 and < 65 years	1	
	≤ 45 years	0	
Risk factors	≥ 3 risk factors or history of	2	
	atherosclerotic disease*	2	
	1 or 2 risk factors	1	
	No risk factors known	0	
Troponin	≥ 3x normal limit	2	
	> 1 and < 3x normal limit	1	
	≤ 1x normal limit	0	
		Total	

*Risk factors for atherosclerotic disease:

Hypercholesterolemia Hypertension Diabetes Mellitus Cigarette smoking Positive family history Obesity C-Statistic scores achieved in this study:

HEART: 0.83 TIMI: 0.75 GRACE: 0.70

C-Statistic interpretation:

A score of "1.00" would mean the score predicts outcome with 100% perfection. A score of 0.50 is the same as a "50/50 coin toss." A score of LESS THAN 0.50 means that the score predicts the opposite outcome.

US HEART Score Validation

1,070 observation unit patients at Wake Forest

Out performed clinician gestalt !

Mahler et. al, Crit Path Cardiol, 2011 Mahler et. al, Int J Cardiol, 2013

HEART Pathway 12+

Chest pain. Risk-stratified.

Impathiq

Designed for iPhone

★★★★★ 4.5 • 13 Ratings

Free

iPhone Screenshots

The HEART Pathway uses history, ECG, and other key risk factors

The HEART Score

Score	Common Diagnosis:	Disposition:
0-3	Low Risk Chest Pain	Early Discharge with referral
4-6	Low Risk Chest Pain Unstable Angina	Observation Unit or Admission Tele
7-10	Unstable Angina NSTEMI STEMI	Tele Admission ICU Admission STAT Cath Lab

Heart Score Reliability

HEART score reliably predicts endpoints

More on HEART SCORE in our ACS Case Studies in Session 2 . . .

"Cardiac A & P 101"

"Cardiac A & P 101"

Heart Chambers

FOUR CHAMBERED PUMP

FOUR CHAMBERED PUMP...

FOUR CHAMBERED PUMP...

2 VENTRICLES

PRIMARY JOB:

"PUMP BLOOD TO THE LUNGS AND THE REST OF THE BODY"

WHEN FUNCTIONING PROPERLY, THE ATRIUM SUPPLY **APPROXIMATELY** 10 - 20 % WHAT PERCENTAGE OF THE **CARDIAC OUTPUT ?**

THE CHAMBER MOST IMPORTANT TO KEEPING THE PATIENT ALIVE

(and the ONLY one you can't live without)

IS THE LEFT VENTRICLE WHICH WE WILL REFER TO AS THE PUMP

"Cardiac A & P 101"

- Heart Chambers
- Heart Electrical System & ECG Waveforms

"Cardiac A & P 101"

- Heart Chambers
- Heart Electrical System & ECG Waveforms
- Depolarization and Repolarization

CARDIAC ANATOMY and PHYSIOLOGY "101"

CARDIAC CELLS AT REST have POSITIVE charged IONS on the OUTSIDE of the cell membrane, and NEGATIVE charged IONS on the INSIDE

Ca++ Na+ Ca++ Na+ Ca++

CI- CI- K+ CI- K+ CI- K+ CI-

Ca++ Na+ Ca++ Na+ Ca++

CARDIAC ANATOMY and PHYSIOLOGY "101"

... when the IONS shift ... that is, the POSITIVE IONS that were on the outside TRADE PLACES with the NEGATIVE IONS that were on the INSIDE

THIS (OF COURSE) IS KNOW AS DEPOLARIZATION

WHEN EVERYTHING IS WORKING PROPERLY, THE WAVE OF DEPOLARIZING CELLS CAUSES THE HEART TO CONTRACT, AND PUMP BLOOD TO THE LUNGS AND THE SYSTEMIC CIRCULATION

Ventricular Depolarization:

Is represented by the QRS Complex

QRS Complex = Ventricular Depolarization

... when the IONS shift ... that is, the POSITIVE IONS that were on the outside TRADE PLACES with the NEGATIVE IONS that were on the INSIDE

AFTER DEPOLARIZATION, THE CELLS RELAX. THE IONS RETURN TO THEIR ORIGINAL POSITIONS --THIS PROCESS IS KNOWN AS **REPOLARIZATION**

Repolarization on the ECG:

- Is represented by the:
 - -J Point
 - -ST Segment
 - -T Wave

J Point, ST Segment & T Wave = Ventricular Repolarization

ROUTINE TEST OF ICD ELECTRICAL IMPULSE ADMINISTERED DURING ABSOLUTE REFRACTORY PERIOD -- INDUCES VENTRICULAR FIBRILLATION

VENTRICULAR MUSCLE CELL ACTION POTENTIAL

VENTRICULAR MUSCLE CELL ACTION POTENTIAL VOLTAGE (in mV) +10 PHASE: 4 THRESHOLD VOLTAGE TRIGGER POINT " --90

ONE OF TWO EVENTS WILL CAUSE THE CELL TO DEPOLARIZE:

Cell "leaks out" enough negative lons that it reaches the THRESHOLD VOLTAGE (trigger point) and it "selfdepolarizes" (automaticity)

VENTRICULAR MUSCLE CELL ACTION POTENTIAL

VENTRICULAR MUSCLE CELL ACTION POTENTIAL

- 4: CELL COMPLETELY REPOLARIZED
 - -80 to -90 mV CHARGE
 - SLIGHT "LEAKAGE" OF IONS

PHASE:

VENTRICULAR MUSCLE CELL ACTION POTENTIAL

- ELL REPOLARIZED
 - -80 to -90 mV CHARGE
 - SLIGHT " LEAKAGE " OF IONS
- 0: IN TYPICAL MUSCLE CELLS, PHASE 0 INITIATED BY: CELLS "PUSHED OVER TRIGGER POINT " BY:
 - PACEMAKER CELLS
 - NEIGHBOR MUSCLE CELL
 DEPOLARIZATION
 - RAPID INFLUX OF POSITIVELY CHARGED
 SODIUM IONS via "FAST CHANNELS "
 - CELL DEPOLARIZATION

VENTRICULAR MUSCLE CELL ACTION POTENTIAL

- CELL REPOLARIZED
 - -80 to -90 mV CHARGE
 - SLIGHT " LEAKAGE " OF IONS
- 0: IN TYPICAL MUSCLE CELLS, PHASE 0 INITIATED BY: CELLS "PUSHED OVER TRIGGER POINT " BY:
 - PACEMAKER CELLS
 - NEIGHBOR MUSCLE CELL DEPOLARIZATION
 - RAPID INFLUX OF POSITIVELY CHARGED
 SODIUM IONS via "FAST CHANNELS "
 - CELL DEPOLARIZATION

VENTRICULAR MUSCLE CELL ACTION POTENTIAL

- E CELL REPOLARIZED
 - -80 to -90 mV CHARGE
 - SLIGHT " LEAKAGE " OF IONS
- RAPID INFLUX OF
 + CHARGED SODIUM IONS
 - CELL DEPOLARIZATION
- 1: SODIUM IONS BEGIN TO EXIT THE CELL
 - THIS BEGINS THE REPOLARIZATION PROCESS

VENTRICULAR MUSCLE CELL ACTION POTENTIAL

- CELL REPOLARIZED
 - -80 to -90 mV CHARGE
 - SLIGHT " LEAKAGE " OF IONS
- RAPID INFLUX OF + CHARGED SODIUM IONS
 - CELL DEPOLARIZATION
- SODIUM EXITS CELL
 - REPOLARIZATION BEGINS
- 2 CALCIUM IONS ARE COMPLETING THEIR "SLOW ENTRY" OF CARDIAC CELLS, PROLONGING THE ACTION POTENTIAL

VENTRICULAR MUSCLE CELL ACTION POTENTIAL

- 4 CELL REPOLARIZED
 - -80 to -90 mV CHARGE
 - SLIGHT " LEAKAGE " OF IONS
- RAPID INFLUX OF + CHARGED SODIUM IONS
 - CELL DEPOLARIZATION
- SODIUM EXITS CELL
 - REPOLARIZATION BEGINS
- CALCIUM IONS CONTINUE TO ENTER CELL
- 3 CALCIUM CHANNELS CLOSE

QT Prolongation

- <u>Congenital</u> malformation of ion channels
- <u>Medications</u> or other substances alter lon channel function

When ION CHANNELS are MALFORMED, the abnormal channel shape may DELAY the transfer of IONS

.... this can DELAY REPOLARIZATION, which will show on the ECG as "QT Prolongation"

Normal QT Interval

ABNORMAL (prolonged) QT Interval

When ION CHANNELS are MALFORMED, the abnormal channel shape may DELAY the transfer of IONS

.... this can DELAY REPOLARIZATION, which will show on the ECG as "QT Prolongation"

which can lead to Torsades . . . Cardiac Arrest . . . and SUDDEN DEATH.

Common cause: QTc > 600 ms

- Patients typically have little to no cardiac output when in this rhythm
- TdP may self-terminate or deteriorate into
 VENTRICULAR FIBRILLATION

- Common cause: QTc > 600 ms
- Patients typically have little to no cardiac output when in this rhythm
- TdP may self-terminate or deteriorate into VENTRICULAR FIBRILLATION

Pacemaker Cells

• When cardiac cells self-depolarize

VENTRICULAR MUSCLE CELL ACTION POTENTIAL

VENTRICULAR MUSCLE CELL ACTION POTENTIAL

VENTRICULAR MUSCLE CELL ACTION POTENTIAL VOLTAGE (in mV) THIS IS -+100 KNOWN AS PHASE: AUTOMATICITY 4 THRESHOLD VOLTAGE TRIGGER POINT " -90 ONE OF TWO EVENTS WILL CAUSE THE CELL TO DEPOLARIZE: 2. THE CELL WILL "LEAK" ENOUGH OF IT'S OWN IONS TO CAUSE IT TO REACH THE THRESHOLD VOLTAGE, (a.k.a. the "TRIGGER POINT") CAUSING THE CELL TO **DEPOLARIZE ITSELF ... and then in turn, it's neighbors**

COMPONENTS OF ACTION POTENTIAL WAVEFORM

COMPONENTS OF ACTION POTENTIAL WAVEFORM

CARDIAC PACEMAKER CELLS (SINUS NODE and A-V NODE)

DO NOT HAVE FAST SODIUM CHANNELS...

COMPONENTS OF ACTION POTENTIAL WAVEFORM

COMPONENTS OF ACTION POTENTIAL WAVEFORM

COMPONENTS OF ACTION POTENTIAL WAVEFORM

DIFFERENCES IN ACTION POTENTIAL IN DIFFERENT TYPES OF HEART CELLS CARDIAC PACEMAKER CELLS

DIFFERENCES IN "LEAKAGE RATES" OF IONS DURING PHASE 4 DETERMINE THE CELL'S "INHERENT FIRING RATES"

DIFFERENCES IN ACTION POTENTIAL IN DIFFERENT TYPES OF HEART CELLS MUSCLE and PURKINJE FIBER ACTION POTENTIALS

"Cardiac A & P 101"

- Heart Chambers
- Heart Electrical System & ECG Waveforms
- Depolarization and Repolarization
- Normal Pressures within Heart & Lungs

"The Cardiac Catheterization Handbook,"

Morton J. Kearn, MD

"Cardiac A & P 101"

- Heart Chambers
- Heart Electrical System & ECG Waveforms
- Action Potential
- Normal Pressures within Heart & Lungs
- Heart Valves

ATRIO-VENTRICULAR VALVES

"Cardiac A & P 101"

- Heart Chambers
- Heart Electrical System & ECG Waveforms
- Depolarization and Repolarization
- Normal Pressures within Heart & Lungs
- Heart Valves
- Heart Sounds Overview

ABNORMAL EKG CHANGES THAT MAY PRESENT WITH ABNORMAL HEART SOUNDS:

- ACUTE MI
- CHAMBER HYPERTROPHY
- RECENT MI (NECROSIS)
- PERICARDITIS

- Normal HeartSounds
- Murmurs - systolic
 - diastolic
- Friction Rubs

SCOTT DAVIDSON, RN auscultating heart sounds at St. Joseph's Hospital Heart Institute Tampa, FL

HEART SOUNDS ARE GENERATED BY THE SOUND OF THE HEART VALVES <u>CLOSING</u>.

THERE ARE TWO NORMAL HEART SOUNDS, KNOWN AS: S-1 and S-2

WE OFTEN DESCRIBE THESE HEART SOUNDS AS "LUB - DUP"

S-1 BEGINNING OF SYSTOLE.

SOUND OF THE MITRAL AND TRICUSPID VALVES CLOSING.

S-2 OCCURS AT THE END OF SYSTOLE (THE BEGINNING OF DIASTOLE).

IT IS THE SOUND OF THE AORTIC AND PULMONARY VALVES CLOSING.

MURMUR = "SWOOSH" SOUND CAUSED BY THE SOUND OF TURBULENCE.

S-1 MURMUR SOUNDS LIKE:

"SWOOSH-DUB . . . SWOOSH-DUB . . . SWOOSH-DUB SWOOSH-DUB . . . "

CAUSE OF SYSTOLIC (S 1) MURMUR

DAMAGE TO
MITRAL and/or
TRICUSPID
VALVE(s)

CAUSES REGURGITATION

MOST SYSTOLIC MURMURS CAUSED BY MITRAL VALVE FAILURE.

ACUTE MITRAL VALVE REGURGITATION IS A POTENTIALLY LETHAL COMPLICATION OF ACUTE / RECENT EXTENSIVE TRANSMURAL MI

ACUTE MITRAL VALVE RUPTURE USUALLY OCCURS 7-10 DAYS POST EXTENSIVE MI (e.g.: INFERIOR POSTERIOR LATERAL MI). **ACUTE Mitral Valve REGURGITATION** can be caused by **EXTENSIVE "Multi-Site" Myocardial** Infarction and Necrosis – which results in PAPILLARY MUSCLE **NECROSIS** and **PAPILLARY MUSCLE TEAR.**

Papillary muscles are attached to "multiple surfaces"

A Common Cause of ACUTE MITRAL REGURGITATION is:

"Patients who are 7-10 days POST-**EXTENSIVE MI,"** in cases where the "zone of infarction" is large (e.g. "inferior-posterior-lateral") and there was a delay in PCI resulting in large zone of necrosis.

ATRIO-VENTRICULAR VALVES

Symptoms of Acute Mitral Regurgitation

- SHOCK
- PROFOUND HYPOTENSION
- PINK, FROTHY SPUTUM
- PULMONARY EDEMA
- SYSTOLIC (S1) MURMUR

"SWOOSH – DUB.....SWOOSH – DUB.....SWOOSH – DUB..."

BASIC HEART SOUNDS ASSESSMENT

MURMUR = "SWOOSH" SOUND CAUSED BY THE SOUND OF TURBULENCE.

S-2 MURMUR SOUNDS LIKE:

"LUB-SWOOSH . . . LUB-SWOOSHLUB-SWOOSH LUB-SWOOSH . . . "

CAUSE OF DIASTOLIC (S2) MURMUR

DAMAGE TO
AORTIC and/or
PULMONIC
VALVE(s)

CAUSES REGURGITATION

Chronic Valvular REGURGITATION (Leaky Valve) leads to elevated heart chamber pressures and DILITATION.

Chronic Valvular STENOSIS ("Creaky" Valve) leads to Cardiac Muscle STRAIN and HYPERTROPHY.

BOTH conditions, if untreated, eventually leads to **HEART FAILURE**.

Heart Sounds: S3

- S3 sounds like: "kenTUCky . . . kenTUCky"
- Caused by: increased atrial pressure.

S₃ is associated with: Heart Failure,
Dilated Cardiomyopathy.

Heart Sounds: S4

• S4 sounds like: "TENnessee... TENnessee"

• Caused by: stiffened left ventricle.

 S4 is associated with: Hypertension, Aortic Stenosis, Ischemic or Hypertrophic Cardiomyopathy.

Access University of Washington Department of Medicine

Heart Sound Simulator

BASIC HEART SOUNDS ASSESSMENT

FRICTION RUB

- ASSOCIATED WITH PERICARDITIS
- SOUNDS LIKE THE GENTLE RUBBING OF SANDPAPER

HAS 3 COMPONENTS: SYSTOLIC, EARLY, and LATE DIASTOLIC

BASIC HEART SOUNDS ASSESSMENT

FRICTION RUB

IS PRESENT IN MOST ACUTE TRANSMURAL MI PATIENTS

- MAY BE PRESENT WITHIN HOURS AFTER ONSET
- IS TRANSIENT -- MAY LAST FOR A FEW DAYS

MYOCARDIAL CROSS - SECTION

ENDOCARDIUM=

MYOCARDIUM

EPICARDIUM

PERICARDIAL SPACE

FIBROUS PERICARDIUM (PERICARDIAL SAC)

NORMAL AMOUNT OF

FLUID IN

PERICARDIAL SPACE =

20 - 50 cc

"Cardiac A & P 101"

- Heart Chambers
- Heart Electrical System & ECG Waveforms
- Depolarization and Repolarization
- Normal Pressures within Heart & Lungs
- Heart Valves
- Heart Sounds Overview
- Fibrous Skeleton of Heart

THE "SKELETON OF THE HEART"

Fibrous Skeleton of the Heart...

- Rarely taught But it's so important to understanding cardiac function and ECGs.....
- It's a disk-shaped structure separating the atrium from the ventricles.
- Secures the heart valves.
- Acts as an electrical insulator, blocks electrical current......
- An abnormal hole (BYPASS TRACT) allows current to "leak" between atrium and ventricles

WOLFF-PARKINSON-WHITE THE NORMAL ECG....

WOLFF-PARKINSON-WHITE EKG CHARACTERISTICS

WOLFF-PARKINSON-WHITE EKG CHARACTERISTICS

WOLFF-PARKINSON-WHITE EKG CHARACTERISTICS

17-MAY-1997 15:32:09 ST. JOSEPH'S WOMEN'S-WOMEN' ROUTINE RETRIEVAL

16 yr	Vent. rate	92	BPM	
Female Caucasian	PR interval	112	ms	
	QRS duration	118	ms	
Room:REC	QT/QTc	356/440	ms	
Loc:20 Option:50	P-R-T axes	59 -22	107	

Normal sinus rhythm with sinus arrhythmia Left atrial enlargement Anterior infarct, age undetermined Inferior infarct, age undetermined ST & T wave abnormality, consider lateral ischemia Wolff–Parkinson–White Abnormal ECG No previous ECGs available

01-MAY-1999 04:14:17

ST. JOSEPH'S HOSPITAL-IN1464 ROUTINE RETRIEVAL

25mm/s 10mm/mV 40Hz 005C 12SL 250 CID: 12 EID:18 EDT: 16:01 17-MAY-1997 ORDER:

W-P-W patients often experience Tachycardias:

- Narrow QRS Tachycardia (SVT)
- Wide QRS Tachycardia (mimics V-Tach.

The same patient can present with narrow QRS SVT, and at another time, Wide QRS Tachycardia

THIS RHYTHM IS: SUPRAVENTRICULAR TACHYCARDIA (SVT)

MAIN IDENTIFICATION CHARACTERISTIC(S): HEART RATE TOO FAST, USUALLY > 150. P WAVES MAY BE "BURIED" IN THE PRECEDING T WAVES. Pt USUALLY C/O "SUDDEN ONSET of HEART RACING," or "PALPITATIONS."

RATE	TACHYCARDIC (usually >	150)
RHYTHM	REGULAR	
P-R INTERVAL	NORMAL or ABNORMAL.	MAY BE IMPOSSIBLE TO SEE DUE
P: QRS RATIO	1:1	TO P WAVE BURIED IN T WAVES
QRS INTERVAL	NORMAL	

Patient Profile: Wolff-Parkinson-White:

- Typically Pediatric / Young Adult
- May not know they have it
- May experience episodes of "palpitations" or "Very Fast Heartbeat."
- W-P-W may CAUSE A-fib with RVR. Patients may present with symptoms of "palpitations," "heart racing," "lightheadedness," or "passing out"

EMS 12 Lead ECG

10 wires . . .

- 4 limb leads
- 6 chest ("V") leads

OBTAINING THE 12 LEAD ECG

And have it interpreted by a physician or mid-level provider *...within 10 minutes !*

• Limb leads should be on the limbs.

- Limb leads should be on the limbs.
- When emergency circumstances dictate that limb leads be placed on patient's torso, the words "LIMB LEADS ON PATIENT'S TORSO" should be noted on the ECG.

Recent AHA/ACC/HRS literature indicates QRS AMPLITUDE, Q WAVE DURATION, AXIS and WAVEFORM DEFLECTION can be altered when limb leads are placed on the patient's torso (Mason-Likar lead placement).

Therefore every effort should be made to place limb leads on the limbs.

AHA/ACC/HRS Scientific Statement

Recommendations for the Standardization and Interpretation of the Electrocardiogram Part I: The Electrocardiogram and Its Technology

affected by monitoring lead placement; however, tracings that use torso electrodes differ in important ways from the standard 12-lead ECG. In addition to body position differences that affect the ECG,¹⁰⁹ monitoring electrodes placed on the trunk do not provide standard limb leads, and distortion of the central terminal alters the augmented limb leads and the precordial leads.^{110,111} Tracings with Mason-Likar and other alternative lead placement may affect QRS morphology more than repolarization compared with the standard ECG; these differences can include false-negative and false-positive infarction criteria.^{81,112} Motion artifact of the limbs is a particular problem for routing recording in poonstar infants and

AHA/ACC/HRS Scientific Statement

Recommendations for the Standardization and Interpretation of the Electrocardiogram Part I: The Electrocardiogram and Its Technology

Recommendations

ECGs recorded with torso placement of the extremity electrodes cannot be considered equivalent to standard ECGs for all purposes and should not be used interchangeably with standard ECGs for serial comparison. Evaluation of the effect of torso placement of limb leads on waveform amplitudes and

STANDARD LEAD PLACEMENT ---12 LEAD ECG

4 th INTERCOSTAL SPACE

V4 is at 5th INTERCOSTAL SPACE. V5 & V6 are on the SAME HORIZONTAL PLANE.

- PATIENT SHOULD LAY AS FLAT AS POSSILVE
- LIMB LEADS SHOULD BE PLACED AS DISTALLY AS POSSIBLE

Leads V1 & V2 on 12 Lead ECG:

- Proper lead placement of precordial Leads V1 and V2 are 4th intercostal space on opposite sides of the sternum.
- Incorrect placement of Leads V1 and V2 will result in: reduction of R wave amplitude (resulting in poor R wave progression) leading to misdiagnosis of previous anterior / septal infarction.

CORRECT Lead placement:

INCORRECT Lead placement:

AHA/ACC/HRS Scientific Statement

Recommendations for the Standardization and Interpretation of the Electrocardiogram Part I: The Electrocardiogram and Its Technology

1.1

the often profound alterations in waveforms that can result from precordial electrode misplacement.^{85,86} A common error is superior misplacement of V_1 and V_2 in the second or third intercostal space. This can result in reduction of initial R-wave amplitude in these leads, approximating 0.1 mV per interspace, which can cause poor R-wave progression or erroneous signs of anterior infarction.87 Superior displacement of the V_1 and V_2 electrodes will often result in rSr' complexes with T-wave inversion, resembling the complex in lead aVR. It also has been shown that in patients with low diaphragm position, as in obstructive pulmonary disease,88,89

Kligfield et al Standardization and Interpretation of the ECG, Part I

Correct Lead Placement

RS = NO old MI

Incorrect Lead Placement

ECG PAPER - THE VERTICAL AXIS:

- SMALL BOXES = 1mm SQUARES -
- THE VERTICAL
 AXIS REPRESENTS
 AMPLITIUDE
 (VOLTAGE)
- IN VERTICAL
 DIRECTION, THERE
 ARE 5 SMALL
 BOXES IN EACH
 LARGE (5mm) BOX
- 1 mv CALIBRATION SPIKE = 10 mm —

ECG PAPER - THE HORIZONTAL AXIS:

THE HORIZONTAL AXIS REPRESENTS TIME...

STANDARD SPEED FOR RECORDING ADULT EKGs = 25 mm / SECOND

EACH 1mm BOX = .04 SECONDS, or 40 MILLISECONDS (40 ms)

5 SMALL BOXES = .20 SECONDS, or 200 MILLISECONDS (200 ms)

-										
ITS										
ED G										
)										_
<										
os							 		 	 _
i = or										
DS										

Evaluate this EKG for each of the "Normal" criteria seen on the NEXT 2 SLIDES

Speed: 25 mm/sec Limb: 10 mm/mV Chest: 10.0 mm/mV

75 Years

. Sinus rhythm.

DOB

Rate

ORSD

PR

II

II

Device

76

161

90

F 60~ 0.15-100 Hz 100B CL

The Normal 12 Lead EKG

- NSR (rate 60-100, regular rhythm)
- P Waves upright all leads except aVR
- P Waves inverted lead aVR, possibly V1
- QRS upright Leads I, II, III, aVL, aVF, V5, V6
- QRS inverted Leads aVR, V1, V2
- QRS biphasic: Leads V3, V4
- P wave size: up to 2mm tall, 2.5mm long
- QRS height Limb Leads: 5-15mm tall
- QRS height V Leads 10-15mm tall
- QRS width: not to exceed 3mm (120 ms)
- Overall QRS Amplitude: not greater than 30mm
The Normal 12 Lead EKG

- T waves Upright all Leads except aVR
- T wave Inverted in Lead aVR
- (everything is inverted in lead aVR)
- T wave MAY be inverted (as a normal variant) in Leads III and aVL.
- Overall QRS Amplitude: not greater than 30mm

in EVERY LEAD EXCEPT aVR !!

- T WAVE: UPRIGHT, POSITIVE -
- J POINT: ISOELECTRIC (or < 1 mm dev.)
 ST SEG: SLIGHT, POSITIVE INCLINATION

ASSESS:

- WHEN QRS WIDTH IS NORMAL (<120 ms)

NORMAL ST - T WAVES

THE ECG MACHINE STANDARD 12 LEADS - USES 10 WIRES (6 CHEST and 4 LIMB)

- LEADS I, II, III, and V1, V2, V3, V4, V5, V6

- 1 POSITIVE ELECTRODE -
- 1 NEGATIVE ELECTRODE -
- **1 GROUND ELECTRODE**
- LEADS AVR, AVL, and AVF
 - 1 POSITIVE ELECTRODE ~
 - 2 NEGATIVE ELECTRODES
 - 1 GROUND ELECTRODE

G

IS THE "EYE" . . .

CURRENT MOVING TOWARD THE EYE (POSITIVE ELECTRODE)

RECORDS AN "UPWARD" DEFLECTION

CURRENT MOVING AWAY FROM THE EYE (POSITIVE ELECTRODE)

RECORDS A "DOWNWARD" DEFLECTION

What part of the HEART does each lead SEE ?

THE POSITIVE ELECTRODE

IS THE "EYE" . . .

Imagine a body made of clear glass, with only a HEART inside. We dip this body in liquid chocolate, and then scratch holes in each spot where we normally place the ECG leads

AREAS VIEWED by 12 LEAD ECG			
AVR			
AVL, I			
V1, V2			
V3, V4			
V5, V6			
II, III, AVF			

THE POSITIVE ELECTRODE

Lead AVR Views the BASILAR SEPTUM (region of the Bundle of His)

V1 - V4 VIEW THE ANTERIOR-SEPTAL WALL of the LEFT VENTRICLE

V1, V2 - ANTERIOR / SEPTAL V3, V4 - ANTERIOR

via RECIPROCAL CHANGES.

HOW EKG VIEWS INDICATIVE CHANGES

EXAMPLE:

ST Depression can indicate:

- ISCHEMIA
- "Partial-wall thickness" MI (NSTEMI)
- STEMI (in the opposite side of the heart)
- Other things (like RBBB, certain medications, etc).

If we put ECG leads on the BACK of a PATIENT who is having an ACUTE POSTERIOR WALL MI.....

V5 - V6 VIEW THE LATERAL WALL of the LEFT VENTRICLE

LEADS II, III, and aVF VIEW INFERIOR WALL of the LEFT VENTRICLE

AR	EAS	S V	IEW	/ED	
by	12	LE/	AD	ECO	3
VR	BA	SILA	AR S	EPTA	١L

AVL, I LATERAL ANTERIOR

A

V1, V2 ANTERIOR

SEPTAL

POSTERIOR (recip.)

V3, V4	ANTERIOR
	ANTERIOR

V5, V6 LATERAL

II, III, AVF INFERIOR

THE CORONARY

to understanding the PHYSIOLOGICAL CHANGES that occur during ACUTE MI."

"INVALUABLE ASSET for ALL MEDICAL PROFESSIONALS who provide direct care to STEMI patients !"

The 12 Lead ECG becomes your "crystal ball !!"

INTERPRET THE EKG, THEN:

IDENTIFY THE AREA OF THE HEART WITH A PROBLEM . . . RECALL THE ARTERY WHICH SERVES THAT REGION . . . RECALL OTHER STRUCTURES SERVED BY THAT ARTERY ... ANTICIPATE FAILURE OF THOSE STRUCTURES . . . • INTERVENE APPROPRIATELY !

V1 - V4 VIEW THE ANTERIOR-SEPTAL WALL of the LEFT VENTRICLE

V1, V2 - ANTERIOR / SEPTAL V3, V4 - ANTERIOR

Which Coronary Artery typically Supplies the ANTERIOR WALL? 246

cutaway view of the

LEFT ANTERIOR DESCENDING ARTERY (LAD)

SUPPLIES APPROX. 35 - 45% of the LV MUSCLE MASS

LEFT ANTERIOR DESCENDING ARTERY (LAD)

BUNDLE OF HIS
BUNDLE BRANCHES ()
35 - 45 % OF LV MUSCLE MASS
ANTERIOR WALL
SEPTAL WALL (anterior 2/3)

via RECIPROCAL CHANGES.

ST Depression in Leads V1 – V4:

Direct view of ISCHEMIA (anterior wall)

- Direct view of ISCHEMIA (anterior wall)
- Direct view of NSTEMI (anterior wall)

Non-STEMI (NSTEMI)

Non-ST Segment Elevation Myocardial Infarction. "sub-endocardial MI" . . . "partial wall thickness"

STEMI

ST Segment Elevation Myocardial Infarction.

- Direct view of ISCHEMIA (anterior wall)
- Direct view of NSTEMI (anterior wall)
- Reciprocal view of STEMI (opposite side of heart - posterior wall)

If we put ECG leads on the BACK of a PATIENT who is having an ACUTE POSTERIOR WALL MI.....

POSTERIOR WALL BLOOD SUPPLY

V5 - V6 VIEW THE LATERAL WALL of the LEFT VENTRICLE

Which Coronary Artery typically Supplies the LATERAL WALL? 263

cutaway view of the

CIRCUMFLEX ARTERY (CX) DISTRIBUTION

SUPPLIES 20 - 30 % of the LV MUSCLE MASS

OCCLUSION of OBTUSE MARGINAL ARTERY

OCCLUSION of RAMUS ARTERY

OCCLUSION of DIAGONAL ARTERY

46 yr	Vent. rate	109	BPM
Female	PR interval	132	ms
220-001000000000	QRS duration	82	ms
Room:ER	QT/QTc	346/465	ms
	P-R-T axes	60 11	-32

Sinus tachycardia

Left ventricular hypertrophy with repolarization abnormality

*** ** ** ** * ACUTE MI ** ** ** **

ST elevation consider lateral injury or acute infarct

ST Segment elevation ONLY in Leads I and aVL

ST Elevation isolated to Leads I and aVL - usually indicates the "Culprit Artery" is most likely One of the following:

- RAMUS BRANCH
- 1st DIAGONAL off of LAD
- 1st OBTUSE MARGINAL off of CIRCUMFLEX

Lead AVR Views the BASILAR SEPTUM (region of the Bundle of His)

When LEAD AVR shows ST Elevation: **STEMI:** consider occlusion of the Left Main Coronary Artery.

OCCLUSION of the LEFT MAIN CORONARY ARTERY

TOTAL OCCLUSION of the LEFT MAIN CORONARY ARTERY

The LEFT MAIN CORONARY ARTERY

SUPPLIES 75 - 100 % of the LEFT VENTRICULAR MUSCLE MASS

When LEAD AVR shows ST Elevation: **STEMI:** consider occlusion of the Left Main Coronary Artery.

When LEAD AVR shows ST **Elevation: NSTEMI** and **Unstable Angina** consider LMCA **Occlusion – or TRIPLE VESSEL DISEASE**

In patients without STEMI, ST **Elevation in AVR, when seen** with global indications of ischemia (ST Depression in 8 leads or more), is indicative of advanced multi-vessel disease or significant Left Main **Coronary Artery stenosis**

ш

GLOBAL ISCHEMIA

- ST Elevation Lead aVR
- ST Depression in 8 or more other Leads
- Indicates either SUB-TOTALLY OCCLUDED LEFT MAIN CORONARY ARTERY – or – TRIPLE VESSEL DISEASE.
- MOST PATIENTS WITH THIS ECG PRESENTATION REQUIRE OPEN HEART SURGERY.

Critical Triple Vessel Disease = STAT Coronary Artery Bypass Surgery

PROXIMAL OCCLUSION of the RIGHT CORONARY ARTERY. SUB-TOTAL OCCLUSION IF CIRCUMFLEX ARTERY.

RIGHT CORONARY ARTERY filling retrograde via COLLATERAL ARTERIES.

COLLATERAL CIRCULATION from SEPTAL PERFORATORS to RCA DISTRIBUTION.

cutaway view of the LEFT MAIN CORONARY ARTERY (LMCA)

GP SUPPLIES APPROXIMATELY 75% OF LV MUSCLE MASS

LEADS II, III, and aVF VIEW INFERIOR WALL of the LEFT VENTRICLE

Which CORONARY ARTERY usually supplies the INFERIOR WALL ??

75 - 80% of the POPULATION HAVE THIS CORONARY ARTERY ANATOMY 29

- 🎗 — 🕨 HELPFUL HINT MEMORIZE THIS ! 🛛 🔶 🚽 **RIGHT CORONARY ARTERY (RCA)** RIGHT DOMINANT SYSTEMS RIGHT ATRIUM SINUS NODE (55% of the population) RIGHT VENTRICLE - 100 % of muscle mass LEFT VENTRICLE: 15 - 25 % of muscle mass - INFERIOR WALL - approx. 1/2 of POSTERIOR WALL AV NODE

DOMINANT RIGHT CORONARY ARTERY - Most common arterial anatomy (75 - 80 % of population)

ARTERIAL DISTRIBUTION - MYOCARDIUM

DOMINANT RCA

75-80 % of POPULATION

So if the Right Coronary Artery Is DOMINANT in 75 – 80% of the POPULATION, what accounts for the Other 20 – 25% ??

LEADS II, III, aVF

Pat ID RX DX		01/20/2021 07:46:46 08/17/1955 65 yrs Account #	Bayfront Health Dept Room Tech	Seven Rivers ED ED EDWR mg
Rate	54	Sinus or ectopic atrial rhythm	Reg Provider:	Xandus Chen
PR	329	Atrial premature complex	15	
QRSd	139	Prolonged FR interval		
QT	437	Nonspecific intraventricular conduction delay		
QTc	415	Inferoposterior infarct, acute (LCx)		
-Axis		Anterolateral infarct, acute		
P	-83	Baseline wander in lead(s) V3,V4		
QRS T	80 77	NO PREVIOUS ECG AVAILABLE FOR COMPARISON		

- Abnormal ECG -

CIRCUMFLEX ARTERY (CX)

- NON-DOMINANT CX: CX = 15 - 30% OF LV MASS

- DOMINANT CX:

CX = 15 - 30% OF LV MASS + PDA = 15 - 25% OF LV MASS TOTAL 30 - 55% OF LV MASS

The 12 Lead ECG Has TWO major BLIND SPOTS **The POSTERIOR WALL**

&

RIGHT

When do we need to see the Right Ventricle?

 All Patient with INFERIOR WALL STEMI (ST Elevation in Leads II, III, aVF). When you see an EKG with ST Elevation in Leads II, III and AVF (Inferior Wall STEMI) – you cannot tell if the blockage is in the PROXIMAL RCA – or the DISTAL RCA.

To see the RIGHT VENTRICLE ...

... such as in cases of INFERIOR WALL M.I.

You must do a RIGHT - SIDED EKG!

To do a RIGHT - SIDED EKG . .

MOVE leads V4, V5, and V6

to the corresponding placement on the RIGHT SIDE of patient's chest...

V4R - V6R VIEW THE RIGHT VENTRICLE

DOMINANT RIGHT CORONARY ARTERY

SA NODAL

When do we need to see the Posterior Wall?

 Any time a patient presents with symptoms of ACS and the 12 Lead ECG shows ST Depression in Leads V1, V2, V3 and/or V4.

Whenever you see **STDEPRESSION** in Leads V1 - V4

you must do a **POSTERIOR LEAD ECG** (V7 - V9)

to see if you Patient is having a POSTERIOR WALL STEM

Whenever your patient's ECG exhibits ST DEPRESSION in any of the ANTERIOR LEADS (V1-V4), CONSIDER the possibility of POSTERIOR WALL STEMI !!

... To DIGANOSE Posterior Wall STEMI, we should see LEADS V7 – V9 !!

HOW TO REPOSITION 6 CHEST LEADS to OBTAIN 3 R VENTRICLE and 3 POSTERIOR LEADS

⇐ The 12 Lead ECG

The 18 Lead ECG \Rightarrow

POSTERIOR WALL MI usually accompanies INFERIOR and/or LATERAL WALL MI !!!

POSTERIOR WALL MI usually accompanies **INFERIOR** and/or LATERAL WALL MI !!! . . . On rare occasions, we see isolated cases of POSTERIOR WALL MI

Pat ID		2019 22:07:54 46 yrs	Caucasian Female	B	ayfront Health ept	h Seven Rivers ED ED
RX DX			Account #	R	Room Tech	
Rate	131	Sinus tachycardia		R	eq Provider:	CHARLES NOLES
PR	128	Probable inferior infarct	, old			
QRSd	92	Posterior infarct, acute	(LCx)			
QT	317	ST depression V1-V3, sugg	est recording posterior leads			
QTC	468	NO PREVIOUS ECG AVAILABLE	FOR COMPARISON			
Axis						
P	65					
QRS	83					
Т	132					

RIGHT DOMINANT and LEFT DOMINANT systems account for approximately 90 % of the population....

The other 10% of the population have a wide diversity of coronary arterial anatomies. Please see the DOWNLOADABLE PDF version of this presentation to view this optional material !!

"ROAD TO FOREVER," Rt 385, Oklahoma panhandle, 1994

PUTTING IT ALL ON PAPER . . .

WAVEFORMS and INTERVALS ...

THE P WAVE

 SHOULD BE UPRIGHT, CONVEX-SHAPED DOME IN ALL LEADS EXCEPT AVR and V1

P Wave Axis

- P waves with abnormal axis ("not pointing in the right direction") may signify ectopic atrial beats.
- When P waves are inverted in most leads with an abnormally short P-R interval (<120ms) the origin of the rhythm may be the AV node (Junctional Rhythm).

Inverted P waves & short P-R interval:

Evaluate P Wave for Atrial Hypertrophy

Evaluate amplitude and duration in Lead II

THE P WAVE

- SHOULD BE UPRIGHT, CONVEX-SHAPED DOME IN ALL LEADS EXCEPT AVR and V1
- SHOULD BE LESS THAN .2 mv (2 mm) HIGH
- SHOULD BE LESS THAN 100 ms (2.5mm) LONG

THE P WAVE

 SHOULD BE INVERTED IN LEAD AVR

THE P WAVE

When the P WAVE is **TOO LARGE** We think of

ATRIAL HYPERTROPHY

(SPECIFIC CRITERIA FOR ATRIAL HYPERTROPHY IS DISCUSSED IN MORE DETAIL IN THE "CHAMBER HYPERTROPHY" SECTION)

Evaluate P Wave for Atrial Hypertrophy

Evaluate amplitude and duration in <u>Lead II</u>

Evaluate P Wave for Atrial Hypertrophy

- Evaluate amplitude and duration in Lead II
- If the P wave it "too tall (>2mm) or too long (>2.5mm)" in Lead II, *then go to Lead V1* to evaluate P wave

THE P WAVE

IN LEAD V1 MAY BE:

POSITIVE

OR BI-PHASIC

THE P WAVE

R

 WHEN THE P WAVE IS BI-PHASIC IN V1, – IT DISPLAYS BOTH R and L ATRIAL DEPOLARIZATION

Evaluate P Wave for Atrial Hypertrophy

- Evaluate amplitude and duration in Lead II
- If the P wave it "too tall (>2mm) or too long (>2.5mm)" in Lead II, then go to lead V1 to evaluate P wave.
- In Lead V1, if the first half (positive deflection) of the P wave is LARGER than the second half (negative deflection) it suggests RIGHT ATRIAL HYPERTROPHY (RAH).

RIGHT ATRIAL ENLARGEMENT

P-WAVE IN V1

02-DEC-1998 00:24:45 ST. JOSEPH'S HOSPITAL-ER ROUTINE RETRIEVAL

25mm/s 10mm/mV 40Hz 005C 12SL 4 CID: 13

EID:17 EDT: 07:28 02-DEC-1998 ORDER:

Evaluate P Wave for Atrial Hypertrophy

- Evaluate amplitude and duration in Lead II
- If the P wave it "too tall (>2mm) or too long (>2.5mm)" in Lead II, then go to lead V1 to evaluate P wave.
- In Lead V1, if the first half (positive deflection) of the P wave is LARGER than the second half (negative deflection) it suggests RAH. If the second half (negative deflection) is larger, it suggests LEFT ATRIAL HYPERTROPY (LAH).

LEFT ATRIAL ENLARGEMENT

P-WAVE IN V1

01-MAY-1998 03:09:15 ST. JOSEPH'S HOSPITAL-ER ROUTINE RETRIEVAL

^{. . . .}

- MAY BE POSITIVE, NEGATIVE, OR BI- PHASIC, BASED ON THE LEAD VIEWED
- TOTAL WIDTH SHOULD BE LESS THAN 120 ms / or .12

THIS QRS COMPLEX CONSISTS OF 3 DEFLECTIONS

THIS QRS COMPLEX CONSISTS OF 3 DEFLECTIONS

THE FIRST DEFLECTION, IF IT POINTS DOWNWARD, IS NAMED THE "Q WAVE"

THIS QRS COMPLEX CONSISTS OF 3 DEFLECTIONS

THE FIRST POSITIVE DEFECTION IS KNOW AS THE 'R' WAVE

THIS QRS COMPLEX CONSISTS OF 3 DEFLECTIONS

THIS QRS COMPLEX CONSISTS OF 3 DEFLECTIONS

R

S

Q

AND IS THE <u>ONLY</u> TRUE "QRS" COMPLEX

SOME OF THE OTHER VARIATIONS INCLUDE . . .

WHAT ARE THESE COMPLEXES ??

QRS INTERVAL

QRS COMPLEX TOO WIDE WIDER THAN 120 mSEC

THINK:

- BUNDLE BRANCH BLOCK
 VENTRICULAR COMPEX (ES)
- PACED RHYTHM
- L VENTRICULAR HYPERTROPHY
- **ELECTROLYTE IMBAL.** $(\uparrow K + \downarrow C_a ++)$
- DELTA WAVE (PRE-EXCITATION)

When the QRS is WIDE (> 3mm):

 If you KNOW the Rhythm is originating ABOVE the Ventricles (such as NSR or any Supraventricular Rhythm) – you should determine if the QRS has a RIGHT or LEFT Bundle Branch Block morphology. Normal Sinus and Other "Supraventricular Rhythms" with WIDE QRS (> 120 ms)

 Determine LEFT vs. RIGHT Bundle Branch Block Pattern

Simple "Turn Signal Method" . . .

THE "TURN SIGNAL METHOD" for identifying BUNDLE BRANCH BLOCK

USE LEAD V1 for this technique

To make a **RIGHT TURN**

you push the turn signal lever UP.....

THINK:

V1

V1

"QRS points UP = RIGHT BUNDLE BRANCH BLOCK"

To make a **LEFT TURN** you push the turn signal lever **DOWN**

THINK:

"QRS points DOWN = LEFT BUNDLE BRANCH BLOCK"

09:16:40

74 yr Female	Caucasian	Vent. rate PR interval QRS duration	64 188 152	BPM ms ms	Normal sinus rhythm Left bundle branch block Abnormal ECG When compared with ECG of 28–MAY–2003 06:36,
Loc:7	Option:35	P-R-T axes EKG #WD030	472/486 78 3 120050	ms 106	

Technician: WW

USE LEAD V1 for this technique

More on Determining Right – vs – Left Bundle Branch Block in Session 2.

QRS HEIGHT

is a reflection of the QRS AMPLITUDE.

The NORMAL QRS AMPLITUDE varies from one lead to another...

QRS AMPLITUDE

- is influenced by:
 - age
 - physical fitness
 - body size
 - conduction system disorders
 - chamber hypertrophy

QRS AMPLITUDE

is measured by finding the TALLEST POSITIVE **DEFLECTION (RWAVE)** and the DEEPEST NEGATIVE DEFLECTION (SWAVE) on the 12 LEAD EKG and ADDING THE VALUES TOGETHER

MEASURING THE "OVERALL QRS AMPLITUDE"

Add the SIZE of the TALLEST R WAVE to the SIZE of the DEEPEST S WAVE

QRS AMPLITUDE

MAXIMUM NORMAL VALUES are difficult to define due to differences in PATIENT AGE, BODY SIZE, and FITNESS.

HOWEVER A GENERAL VALUE GUIDELINE IS: 3.0 mV (30 mm on normally calibrated EKG)

OVERALL QRS AMPLITUDE TOO HIGH: (GREATER THAN 3.0 mV / 30 mm)

THINK:

VENTRICULAR HYPERTROPHY

Hypertrophy "Cheats":

- WHEN QRS COMPLEX(ES) "SPEAR" OUTSIDE OF THEIR SPACE.
- WHEN QRS COMPLEXES SPEAR THROUGH OTHER LEADS !
14-JUL-1997 14:30:58 ST. JOSEPH'S HOSPITAL-ER ROUTINE RETRIEVAL

17 yr		Vent. rate	90	BPM	
Male	Black	PR interval	136	ms	
		QRS duration	94	ms	
Room:E	R	QT/QTc	378/462	ms	
Loc:3	Option:16	P-R-T axes	77 123	58	

Normal sinus rhythm Right atrial enlargement Right axis deviation Incomplete right bundle branch block , plus right ventricular hypertrophy NORMAL SINUS INFERIOR LATERAL CHANGES Abnormal ECG

EKG CLASS #WRO3616941

19-JUN-1997 22:28:08

ST. JOSEPH'S HOSPITAL-ER ROUTINE RETRIEVAL

18-NOV-2002 02:15:46

ST. JOSEPH'S HOSPITAL-ER 1ST PREVIOUS

53 yr		Vent. rate	115	BPM	
Male	Black	PR interval	160	ms	
		QRS duration	92	ms	
Room:ER		QT/QTc	316/437	ms	
Loc:3	Option:23	P-R-T axes	76 -39	59	

EKG CLASS #WR03896717

**UNEDITED COPY – REPORT IS COMPUTER GENERATED ONLY, WITHOUT PHYSICIAN INTERPRETATION Sinus tachycardia Possible Left atrial enlargement Left axis deviation Left ventricular hypertrophy Abnormal ECG No previous ECGs available

10-APR-2003 11:49:36 ST. JOSEPH'S HOSPITAL-CCR ROUTINE RETRIEVAL 61 yr Vent. rate 60 BPM Normal sinus rhythm Male Black PR interval 176 Voltage criteria for left ventricular hypertrophy ms QRS duration 90 ms Abnormal ECG QT/QTc 400/400 ms When compared with ECG of 02-SEP-2002 09:00, Loc:7 Option:35 P-R-T axes 62 33 60 Vent. rate has decreased BY 44 BPM EKG CLASS #WR03503400 Referred by: Confirmed By: D.Q.S .: aVR V1 V4 Ŧ п aVL V2 V5 Ш V3 aVF V6 V1 п 428 V5

25mm/s 10mm/mV 40Hz 005C 12SL 229 CID: 0

EID:28 EDT: 10:43 14-APR-2003 ORDER:

Dama 1 -6 1

QRS AMPLITUDE

CRITERIA FOR MINIMUM AMPLITUDE:

Abnormally LOW QRS VOLTAGE occurs when the OVERALL QRS is:

OVERALL QRS AMPLITUDE TOO LOW: (VERTICAL QRS SIZE)

THINK (in absence of obvious OBESITY):

- MYOCARDITIS / CONSTRICTIVE PERICARDITIS
 EFFUSIONS / TAMPONADE
 - COPD c HYPERINFLATION
 - AMYLOIDOSIS (abnormal protein accumulation in organs)
 - SCLERODERMA (abnormal hardening of skin)
 - HEMACHROMOTOSIS

MYXEDEMA

- (excessive iron buildup in blood /organs)
- (thyroid disorder)

• Q WAVES •

caused by depolarization of the intraventricular septum

caused by:

- necrosis (old infarction)
- hypertrophy

• Q WAVES •

- Normal Q WAVES Caused by SEPTAL DEPOLARIZATION

Q WAVES NORMAL AND FREQUENTLY SEEN Q WAVES EXPECTED Q WAVES, IF PRESENT, CAN NORMALLY BE ANY SIZE³⁵

GENERAL RULES FOR NORMAL Q WAVES - WIDTH

LESS THAN .40 (1 mm) WIDE

GENERAL RULES FOR NORMAL Q WAVES - HEIGHT

LESS THAN 1/3 THE HEIGHT OF THE R WAVE

NORMAL Q WAVES EXCEPTIONS TO THE RULES

LEAD AVR LEAD III

THE Q WAVE CAN BE ANY SIZE

NORMAL Q WAVES EXCEPTIONS TO THE RULES

THERE
SHOULD BE NO Q
WAVES PRESENT
IN LEADS: V1
V2
V3

Q WAVE RULES - SUMMARY:

- Q WAVES SHOULD BE LESS THAN .40 WIDE (1 mm)
- Q WAVES SHOULD BE LESS THAN 1/3 THE HEIGHT OF THE R WAVE
- Q WAVES CAN BE ANY SIZE IN LEADS III and AVR
- THERE SHOULD BE NO Q WAVES IN LEADS V1, V2, or V3

THE T WAVE

- SHOULD BE SYMMETRICAL
- SHOULD BE UPRIGHT IN ALL LEADS, EXCEPT AVR
- MAY BE INVERTED IN LEADS
 I, III, and V1

Leads where the T WAVE may be INVERTED:

An inverted T wave in TWO OR MORE CONTIGUOUS LEADS = potential problem (ischemia)

THE T WAVE

- IN THE LIMB LEADS, SHOULD BE LESS THAN 1.0 mv (10 mm)
- IN THE PRECORDIAL LEADS, SHOULD BE LESS THAN 0.5 mv (5 mm)
- SHOULD NOT BE TALLER THAN R WAVE IN 2 OR MORE LEADS.

HYPER-ACUTE T WAVES - COMMON ETIOLOGIES:

MORE INFORMATION ON HYPERACUTE T WAVES COMING UP SOON

S-T SEGMENT ELEVATION - COMMON ETIOLOGIES:

CONDITION:

- ACUTE INFARCTION
- HYPERKALEMIA
- BRUGADA SYNDROME
- PULMONARY EMBOLUS
- INTRACRANIAL BLEED
- MYOCARDITIS / PERICARDITIS
- L. VENT. HYPERTROPHY
- PRINZMETAL'S ANGINA
- L. BUNDLE BRANCH BLOCK
- PACED RHYTHM
- EARLY REPOLARIZATION & "MALE PATTERN" S-T ELEV.

ON THE NEXT PAGE IN YOUR BOOK ARE SOME EXAMPLES OF THE ABOVE CONDITIONS

S-T SEGMENT DEPRESSION - COMMON ETIOLOGIES:

CONDITION:

- RECIPROCAL CHANGES of ACUTE MI
- NON-Q WAVE M.I. (NON-STEMI)
- ISCHEMIA
- POSITIVE STRESS TEST
- VENTRICULAR HYPERTROPHY (STRAIN PATTERN)
- WOLFF-PARKINSON-WHITE
- OLD MI (NECROSIS vs. ISCHEMIA)
- DIGITALIS
- R. BUNDLE BRANCH BLOCK

T WAVE INVERSION - COMMON ETIOLOGIES:

CONDITION:

- MYOCARDITIS
- ELECTROLYTE IMBALANCE
- ISCHEMIA
- POSITIVE STRESS TEST
- CEREBRAL DISORDER
- MITRAL VALVE PROLAPSE
- VENTRICULAR HYPERTROPHY
- WOLFF-PARKINSON-WHITE
- HYPERVENTILATION
- CARDIOACTIVE DRUGS
- OLD MI (NECROSIS vs. ISCHEMIA)
- DIGITALIS
- R. BUNDLE BRANCH BLOCK
- NO OBVIOUS CAUSE

VENTRICULAR STRAIN PATTERNS

T-WAVES ARE INVERTED and ASYMMETRICAL

VENTRICULAR STRAIN PATTERNS

VENTRICULAR STRAIN PATTERNS

STRAIN PATTERNS ARE INDICATIVE OF SYSTOLIC OVERLOAD -- THE VENTRICLES HAVING TO OVERCOME GREAT FORCE TO EXPEL BLOOD.

VENTRICULAR STRAIN PATTERNS

hang in there !

it's almost LUNCH TIME !!!!

Wayne "Will" Ruppert, III

EVALUATE THE AXIS IN BOTH PLANES

- VERTICAL "AXIS DEVIATION "

- HORIZONTAL "AXIS ROTATION"

66 yr		Vent. rate		
Male	Caucasian	PR interval		
		QRS duration		
Room:401A		QT/QTc	526	
Loc:6	Option:16	P-R-T axes	38	

41 BPM 192 ms 94 ms 526/433 ms 38 70 58

NORMAL AXIS

Technician:

NORMAL	\mathcal{A}	Λ_{-}
		A

10.0 mm/mV 40 Hz 25.0 mm/s

MACVU 003C

COMMON CONDITIONS WHICH MAY CAUSE LEFT AXIS DEVIATION:

- LEFT BUNDLE BRANCH BLOCK
- PACEMAKER
- **C.**0.P.D.
- LEFT VENTRICULAR HYPERTROPHY
- OLD INFERIOR WALL MI
- HYPERKALEMIA
- LEFT ANTERIOR FASCICULAR BLOCK
- WOLFF-PARKINSON-WHITE (types A & B)

11:18:02

81 yr		Vent. rate	82	BPM
Female	Hispanic	PR interval	128	ms
1-2 2-4444-17		QRS duration	86	ms
Room:303A		QT/QTc	392/457	ms
Loc:6	Option:11	P-R-T axes	38 112	-142

What is the AXIS of this EKG?

COMMON CONDITIONS WHICH MAY CAUSE RIGHT AXIS DEVIATION:

- NORMAL FOR PEDS & TALL, THIN ADULTS
- RIGHT VENTRICULAR HYPERTROPHY
- OLD LATERAL WALL MI
- LEFT POSTERIOR FASICULAR BLOCK
- PULMONARY EMBOLUS
- DEXTROCARDIA
- **C.O.P.D.**
- ATRIAL / VENTRICULAR SEPTAL DEFECTS

02:55:00

Dees 1 of 1

COMMON CONDITIONS WHICH MAY CAUSE

(NO-MAN'S LAND AXIS) FAR RIGHT AXIS DEVIATION:

- LEAD TRANSPOSITION
- PACEMAKER RHYTHMS
- VENTRICULAR RHYTHMS
- HYPERKALEMIA

ASSESSING AXIS ROTATION:

V1 V2 V3 V4 V5 V6

1. R - WAVE PROGRESSION

2. IDENTIFICATION OF TRANSITION

ASSESSING AXIS ROTATION:

V1 V2 V3 V4 V5 V6

3. RECALL COMMON PATTERNS of ABNORMAL R-WAVE PROGRESSION to help you build your list of POSSIBLE DIAGNOSES.

OCCURS IN THE LEAD WHERE THE QRS IS THE MOST BIPHASIC

AXIS ROTATION IMPORTANT TRANSITION RULE

"Transition shifts TOWARD HYPERTROPHY and AWAY FROM NECROSIS."

AXIS ROTATION

TRANSITION SHOULD OCCUR IN LEADS V3 or V4

NORMAL TRANSITION IS BETWEEN LEADS V3 and V4

25mm/s 10mm/mV 40Hz 005C 12SL 4 CID: 11

NORMAL TRANSITION

ASSESSING AXIS ROTATION:

IMPORTANT NOTES:

- As with all EKG-made DIAGNOSES, you must consider the TOTALITY of the PATIENT'S PRESENTATION. This includes the PATIENT'S CLINICAL PRESENTATION, RISK FACTOR PROFILE, and your INDEX OF SUSPICION.
- Validate all EKG-suspected DIAGNOSES with Additional, MORE ACCURATE diagnostic testing, e.g.: CARDIAC ECHO, CARDIAC CATHERIZATION, ELECTROPHYSIOLOGIC TESTING, MRI, etc.

AXIS ROTATION

* COMMON CAUSES of EARLY TRANSITION

- 1. Right Bundle Branch Block
- 2. Right Ventricular Hypertrophy
- 3. Old Posterior Wall MI
- 4. Wolff-Parkinson-White (type A) LEFT - SIDED PATHWAY - FROM MARRIOTT'S "Practical Electrocardiography - 10th Edition," 2000

COMMON CAUSES OF EARLY TRANSITION SOME HELPFUL CLUES:

1. Right Bundle Branch Block (RBBB)

- QRS wider than 120ms
- Supraventricular rhythm (normal P : QRS relationship)
- RSR' or RR' ("notching") in V1, V2, and/or V3

2. Right Ventricular Hypertrophy (RVH)

- Corresponding Right Atrial Hypertrophy (RAH)
- Right Axis Deviation (RAD)
- QRS in LEAD I more NEGATIVE than POSITIVE (R<S)

3. Old Posterior Wall MI

- Usually accompanied by OLD INFERIOR WALL MI
- Does NOT abnormally widen the QRS complex

- Short P-R Interval
- Presence of Delta Waves
- Wide QRS complexes

COMMON CAUSES OF EARLY TRANSITION SOME HELPFUL CLUES:

1. Right Bundle Branch Block (RBBB)

- QRS wider than 120ms
- Supraventricular rhythm (normal P : QRS relationship)
- RSR' or RR' ("notching") in V1, V2, and/or V3

2. Right Ventricular Hypertrophy (RVH)

- Corresponding Right Atrial Hypertrophy (RAH)
- Right Axis Deviation (RAD)
- QRS in LEAD I more NEGATIVE than POSITIVE (R<S)

3. Old Posterior Wall MI

- Usually accompanied by OLD INFERIOR WALL MI
- Does NOT abnormally widen the QRS complex

- Short P-R Interval
- Presence of Delta Waves
- Wide QRS complexes

COMMON CAUSES OF EARLY TRANSITIONSOME HELPFUL CLUES:

1. Right Bundle Branch Block (RBBB)

- QRS wider than 120ms
- Supraventricular rhythm (normal P : QRS relationship)
- RSR' or RR' ("notching") in V1, V2, and/or V3

2. Right Ventricular Hypertrophy (RVH)

- Corresponding Right Atrial Hypertrophy (RAH)
- Right Axis Deviation (RAD)
- QRS in LEAD I more NEGATIVE than POSITIVE (R<S)

3. Old Posterior Wall H1

- Usually accompanied by OLD INFERIOR WALL MI
- Does NOT abnormally widen the QRS complex

- Short P-R Interval
- Presence of Delta Waves
- Wide QRS complexes

25.0 mm/s

4 by 2.5s + 3 rhythm lds

31 yr		Vent. rate	109	BPM
Male	Black	PR interval	122	ms
		QRS duration 84	84	ms
Room:ER		QT/QTc	296/398	ms
Loc:3	Option:16	P-R-T axes	79 117	-27

What is the cause of EARLY TRANSITION in this EKG ?

Technician: EKG CLASS #WR03446043

25mm/s 10mm/mV 40Hz 005C 12SL 4 CID: 13

EID:17 EDT: 08:56 20-MAR-2000 ORDER:

COMMON CAUSES OF EARLY TRANSITION SOME HELPFUL CLUES:

1. Right Bundle Branch Block (RBBB)

- QRS wider than 120ms
- Supraventricular rhythm (normal P : QRS relationship)
- RSR' or RR' ("notching") in V1, V2, and/or V3

2. Right Ventricular Hypertrophy (RVH)

- Corresponding Right Atrial Hypertrophy (RAH)
- Right Axis Deviation (RAD)
- QRS in LEAD I more NEGATIVE than POSITIVE (R<S)

3. Old Posterior Wall MI

- Usually accompanied by OLD INFERIOR WALL MI
- Does NOT abnormally widen the QRS complex

- Short P-R Interval
- Presence of Delta Waves
- Wide QRS complexes

COMMON CAUSES OF EARLY TRANSITIONSOME HELPFUL CLUES:

1. Right Bundle Branch Block (PPBB)

- QRS wider than 120mg
- Supraventricular rhythm (normal P : ORS relationship)
- RSR or RR' ("notching") in V1, V2, and/or V3

2. Right Ventricular Hypertrophy (RVH)

- Corresponding Right Atrial Hypertrophy (RAH)
- Right Axis Deviation (RAD)
- QRS in LEAD I more NEGATIVE than POSITIVE (R<S)

3. Cld Posterior Wall Mi

- Usually accompanied by OLD INFERIOR WALL MI
- Does NOT abnormally widen the QRS complex

- Short P-R Interval
- Presence of Delta Waves
- Wide QRS complexes

15-MAR-2000 10:29:05 ST. JOSEPH'S HOSPITAL-ER ROUTINE RETRIEVAL

25mm/s 10mm/mV 40Hz 005C 12SL 4 CID: 13

EID:17 EDT: 08:56 20-MAR-2000 ORDER:

"SEE-SAW EFFECT" of RVH on R WAVE PROGRESSION

V1 V2 V3 V4 V5 V6

14-JUL-1997 14:30:58 ST. JOSEPH'S HOSPITAL-ER ROUTINE RETRIEVAL

17 yr		Vent. rate	90	BPM
Male	Black	PR interval	136	ms
		QRS duration	94	ms
Room:ER		QT/QTc	378/462	ms
Loc:3	Option:16	P-R-T axes	77 123	58

Normal sinus rhythm Right atrial enlargement Right axis deviation Incomplete right bundle branch block , plus right ventricular hypertrophy NORMAL SINUS INFERIOR LATERAL CHANGES Abnormal ECG

Technician: EKG CLASS #WR03616941

RIGHT VENTRICULAR HYPERTROPHY

		Vent. rate	58	BPM
Male	Caucasian	PR interval	168	ms
		QRS duration	84	ms
Room:CCU3		QT/QTc	424/416	ms
Loc:1	Option: 1	P-R-T axes	18 28	29

What is the cause of EARLY TRANSITION in this EKG?

Technician ID: EKG CLASS #WR03602216

25mm/s 10mm/mV 100Hz 005C 12SL 4 CID: 5

EID:18 EDT: 21:53 06-MAY-1997 ORDER:

COMMON CAUSES OF EARLY TRANSITION SOME HELPFUL CLUES:

1. Right Bundle Branch Block (RBBB)

- QRS wider than 120ms
- Supraventricular rhythm (normal P : QRS relationship)
- RSR' or RR' ("notching") in V1, V2, and/or V3

2. Right Ventricular Hypertrophy (RVH)

- Corresponding Right Atrial Hypertrophy (RAH)
- Right Axis Deviation (RAD)
- QRS in LEAD I more NEGATIVE than POSITIVE (R<S)

3. Old Posterior Wall MI

- Usually accompanied by OLD INFERIOR WALL MI
- Does NOT abnormally widen the QRS complex

- Short P-R Interval
- Presence of Delta Waves
- Wide QRS complexes

COMMON CAUSES OF EARLY TRANSITIONSOME HELPFUL CLUES:

1. Right Bundle Branch Block (RBBB)

- QRS wider than 120ms
- Supraventricular rhythm (normal P : ORS relationship)
- RSR' or RR' ("notching") in V1, V2, and/or V3

2. Right Ventricular Hypertrophy (PVH)

- Corresponding Right Atrial Hypertrophy (RAH)
- Right Axis Deviation (RAD)
- ORS in LEAD I more NEGATIVE than POSITIVE (R<S)

3. Old Posterior Wall MI

- Usually accompanied by OLD INFERIOR WALL MI
- Does NOT abnormally widen the QRS complex

- Short P-R Interval
- Presence of Delta Waves
- Wide QRS complexes

OLD POSTERIOR WALL M.I.

	Vent. rate	64	BPM
Caucasian	PR interval	110	ms
	ORS duration	146	ms
40	ÔT/OTc	418/431	ms
Option:28	P-R-T axes	50 -36	119
	Caucasian 40 Option:28	Caucasian Vent. rate PR interval QRS duration 40 QT/QTc Option:28 P-R-T axes	Vent. rate 64 Caucasian PR interval 110 QRS duration 146 40 QT/QTc 418/431 Option:28 P-R-T axes 50 -36

What is the cause of EARLY TRANSITION in this EKG?

Technician EKG CLASS #WR03696205

COMMON CAUSES OF EARLY TRANSITION SOME HELPFUL CLUES:

1. Right Bundle Branch Block (RBBB)

- QRS wider than 120ms
- Supraventricular rhythm (normal P : QRS relationship)
- RSR' or RR' ("notching") in V1, V2, and/or V3

2. Right Ventricular Hypertrophy (RVH)

- Corresponding Right Atrial Hypertrophy (RAH)
- Right Axis Deviation (RAD)
- QRS in LEAD I more NEGATIVE than POSITIVE (R<S)

3. Old Posterior Wall MI

- Usually accompanied by OLD INFERIOR WALL MI
- Does NOT abnormally widen the QRS complex

- Short P-R Interval
- Presence of Delta Waves
- Wide QRS complexes

COMMON CAUSES OF EARLY TRANSITIONSOME HELPFUL CLUES:

1. Right Bundle Branch Block (RBBB)

- QRS wider than 120ms
- Supraventricular rhythm (normal P : QRS relationship)
- PSR' or RR' ("notching") in V1, V2, and/or V3

2. Right Ventricular Hypertrophy (PVH)

- Corresponding Right Atrial Hypertrophy (RAH)
- Right Axis Deviation (RAD)
- QRS in LEAD I more NEGATIVE than POSITIVE (P<S)
- 3. Cld Posterior Wall Mi
 - Usually accompanied by OLD INFERIOR WALL MI
 - Does NOT abnormally widen the QRS complex

- Short P-R Interval
- Presence of Delta Waves
- Wide QRS complexes

01-MAY-1999 04:14:17

ST. JOSEPH'S HOSPITAL-IN1464 ROUTINE RETRIEVAL

04-MAY-1999 04:47:41

ST. JOSEPH'S HOSPITAL-IN1464 ROUTINE RETRIEVAL

51 vr		Vent. rate	69	BPM
Male	ale Caucasian	PR interval	184	ms
510256		ORS duration	88	ms
Room:4	26	OT/OTc	392/420	ms
Loc:5	Option:28	P-R-T axes	60 69	-50

Normal sinus rhythm

Marked T wave abnormality, consider inferior ischemia

Abnormal ECG

When compared with ECG of 01-MAY-1999 21:36, Wolff-Parkinson-White is no longer Present

POST-ABLATION OF KENT BUNDLE

AXIS ROTATION

RIGHT	NORMA	L LEFT
V1 V2	V3 V4	V5 V6
11	t t	

"LATE TRANSITION" / "SHIFTED TO THE LEFT"

- 1. Old Anterior Wall M.I.
- 2. Left Bundle Branch Block
- **3. Left Ventricular Hypertrophy**
- 4. Wolff-Parkinson-White (type B) RIGHT-SIDED PATHWAY - FROM MARRIOTT'S "Practical Electrocardiography - 10th Edition," 2000

.... WITH SOME COMMON HELPFUL CLUES:

1. Old Anterior MI

- Q Waves in V1, V2, and /or V3
- Other causes of LATE TRANSITION ruled out
- 2. Left Bundle Branch Bock (LBBB)
 - Supraventricular Rhythm
 - QRS wider than 120 ms (.12 sec)
 - RsR' or RR' ("notching") in V5 and/or V6
- 3. Left Ventricular Hypertrophy (LVH)
 - Corresponding Left Atrial Hypertrophy (LAH)
 - T wave Strain Pattern V5 / V6
 - Intrinsicoid Deflection in V5 / V6 > 45 ms
 - V1 S wave + V5 or V6 R wave > 35 mm
 - R or S wave in any LIMB LEAD > 2.0 mV (20 mm)

4. Wolff-Parkinson-White (Type B)

- Presence of DELTA waves
- Short P-R Interval (< 120 ms)
- Wide QRS (> 120 ms)

28-MAR-1997 05:46:00

91 yr		Vent. rate	87	BPM
Female	Caucasian	PR interval	156	ms
		QRS duration *	80	ms
Room:3		QT/QTc	332/399	ms
Loc:1	Option:1	P-R-T axes	45 4	96

What is the cause of LATE TRANSITION in this EKG?

Technician ID: EKG CLASS # WR03110848

25mm/s 10mm/mV 100Hz 005C 12SL 4 CID: 5

EID:16 EDT: 11:25 30-MAR-1997 ORDER:

.... WITH SOME COMMON HELPFUL CLUES:

1. Old Anterior MI

- Q Waves in V1, V2, and /or V3
- Other causes of LATE TRANSITION ruled out
- 2. Left Bundle Branch Bock (LBBB)
 - Supraventricular Rhythm
 - QRS wider than 120 ms (.12 sec)
 - RsR' or RR' ("notching") in V5 and/or V6
- 3. Left Ventricular Hypertrophy (LVH)
 - Corresponding Left Atrial Hypertrophy (LAH)
 - T wave Strain Pattern V5 / V6
 - Intrinsicoid Deflection in V5 / V6 > 45 ms
 - V1 S wave + V5 or V6 R wave > 35 mm
 - R or S wave in any LIMB LEAD > 2.0 mV (20 mm)

4. Wolff-Parkinson-White (Type B)

- Presence of DELTA waves
- Short P-R Interval (< 120 ms)
- Wide QRS (> 120 ms)

.... WITH SOME COMMON HELPFUL CLUES:

1. Old Anterior MI

- Q Waves in V1, V2, and /or V3
- Other causes of LATE TRANSITION ruled out
- 2. Left Bundle Branch Bock (1996)
 - Supraventricular Phythm
 - QRS wider than 120 ms (.12 sec)
 - ReR' or RR' ("notching") in V5 and/or V6
- 3. Left Ventricular Hypertrophy (LVH)
 - Corresponding Left Atrial Hypertrophy (LAH)
 - T wave Strain Patters Vo / V6
 - Intrinsicoid Deflection in V5 / V6 > 45 ms
 - V1 S wave + V5 or V6 R wave > 35 mm
 - P or S wave in any LIMB LEAD > 2.0 mV (20 mm)
- 4. Welff-Parkinson-White (Type B)
 - Presence of DELTA waves
 - Short P-R Interval (< 120 ms)
 - Wide QRS (> 120 ms)

25mm/s 10mm/mV 100Hz 005C 12SL 4 CID: 5

EID:16 EDT: 11:25 30-MAR-1997 ORDER:

27-MAR-1991 13:29:00 ST. JOSEPH'S HOSPITAL-IN 65+ ROUTINE RETRIEVAL

85 yr		Vent. rate	55	BPM
Female	Caucasian	PR interval	152	ms
		QRS duration	76	ms
Room:7	15A	QT/QTc	432/413	ms
Loc:6	Option:19	P-R-T axes	40 14	34

Sinus bradycardia with occasional Premature supraventricular complexes Otherwise normal ECG

PRE-INFARCTION EKG

25mm/s 10mm/mV 40Hz 005C 12SL 68 CID: 0

EID:Cnvrtd EDT: ORDER:

27-MAR-1997 12:42:11 ST. JOSEPH'S HOSPITAL-ER ROUTINE RETRIEVAL

EID:15 ED1: 16:51 26-MAR-199

28-MAR-1997 05:46:00 ST. JOSEPH'S HOSPITAL-CCU ROUTINE RETRIEVAL

91 yr		Vent. rate	87	BPM
Female	Caucasian	PR interval	156	ms
		QRS duration *	80	ms
Room:3		QT/QTc	332/399	ms
Loc:1	Option:1	P-R-T axes	45 4	96

Technician ID: EKG CLASS # WR03110848

Normal sinus rhythm Possible Anterior infarct (cited on or before 27–MAR–1997) Abnormal ECG When compared with ECG of 27–MAR–1997 16:26 (UNCONFIRMED), QRS duration has decreased Questionable change in initial forces of Anteroseptal leads Non–specific change in ST segment in Lateral leads QT has shortened **EKG POST - INFARCTION**

25mm/s 10mm/mV 100Hz 005C 12SL 4 CID: 5

EID:16 EDT: 11:25 30-MAR-1997 ORDER:

OLD ANTERIOR-SEPTAL WALL M.I.

COMMON CAUSES OF LATE TRANSITIONSOME HELPFUL CLUES:

When you have an EKG with LATE TRANSITION, which has NO OBVIOUS CAUSE ...

Supect OLD ANTERIOR MI!

- OBTAIN A THOROUGH PATIENT HISTORY
- OBTAIN COPIES OF <u>OLD EKGs</u>, IF AVAILABLE

11:36:49

74 yr		Vent. rate	73	BPM
Female	Caucasian	PR interval	160	ms
		QRS duration	134	ms
82 (H. 1998)		QT/QTc	450/495	ms
Loc:7	Option:35	P-R-T axes	67 -33	62

What is the cause of LATE TRANSITION in this EKG?

.... WITH SOME COMMON HELPFUL CLUES:

1. Old Anterior MI

- Q Waves in V1, V2, and /or V3
- Other causes of LATE TRANSITION ruled out
- 2. Left Bundle Branch Bock (LBBB)
 - Supraventricular Rhythm
 - QRS wider than 120 ms (.12 sec)
 - RsR' or RR' ("notching") in V5 and/or V6
- 3. Left Ventricular Hypertrophy (LVH)
 - Corresponding Left Atrial Hypertrophy (LAH)
 - T wave Strain Pattern V5 / V6
 - Intrinsicoid Deflection in V5 / V6 > 45 ms
 - V1 S wave + V5 or V6 R wave > 35 mm
 - R or S wave in any LIMB LEAD > 2.0 mV (20 mm)

4. Wolff-Parkinson-White (Type B)

- Presence of DELTA waves
- Short P-R Interval (< 120 ms)
- Wide QRS (> 120 ms)

COMMON CAUSES OF LATE TRANSITION WITH SOME COMMON HELPFUL CLUES:

- 1. Oid Anterior MI
 - Q Waves in V1, V2, and /or V3
 - Other causes of LATE TRANSITION ruled out
- 2. Left Bundle Branch Bock (LBBB)
 - Supraventricular Rhythm
 - QRS wider than 120 ms (.12 sec)
 - RsR' or RR' ("notching") in V5 and/or V6
- 3. Left Ventricular Hypertrophy (LVII)
 - Corresponding Left Atrial Hypertrophy (LAH)
 - T wave Strain Pattern V5 / V6
 - Intrinsicoid Deflection in V5 / V6 > 45 ms
 - V1 S wave + V5 or V6 R wave > 35 mm
 - P or S wave in any LIMB LEAD > 2.0 mV (20 mm)
- 4. Wolff-Parkinson-White (Type B)
 - Presence of DELTA waves
 - Short P-R Interval (< 120 ms)
 - Wide QRS (> 120 ms)

53 yr		Vent. rate	115	BPM	
Male	Black	PR interval	160	ms	
		QRS duration	92	ms	
Room:E	R	QT/QTc	316/437	ms	
Loc:3	Option:23	P-R-T axes	76 -39	59	

What is the cause of LATE TRANSITION in this EKG?

EKG CLASS #WR03896717

.... WITH SOME COMMON HELPFUL CLUES:

1. Old Anterior MI

- Q Waves in V1, V2, and /or V3
- Other causes of LATE TRANSITION ruled out
- 2. Left Bundle Branch Bock (LBBB)
 - Supraventricular Rhythm
 - QRS wider than 120 ms (.12 sec)
 - RsR' or RR' ("notching") in V5 and/or V6
- 3. Left Ventricular Hypertrophy (LVH)
 - Corresponding Left Atrial Hypertrophy (LAH)
 - T wave Strain Pattern V5 / V6
 - Intrinsicoid Deflection in V5 / V6 > 45 ms
 - V1 S wave + V5 or V6 R wave > 35 mm
 - R or S wave in any LIMB LEAD > 2.0 mV (20 mm)

4. Wolff-Parkinson-White (Type B)

- Presence of DELTA waves
- Short P-R Interval (< 120 ms)
- Wide QRS (> 120 ms)

COMMON CAUSES OF LATE TRANSITION WITH SOME COMMON HELPFUL CLUES:

- 1. Old Anterior H1
 - Q Waves in V1, V2, and /or V3
 - Other causes of LATE TRANSITION ruled out
- 2. Left Bundle Branch Bock (LBBB)
 - Supraventricular Phythm
 - QRS wider than 120 ms (.12 sec)
 - Rak or RR' ("notching") in V5 and/or V6
- 3. Left Ventricular Hypertrophy (LVH)
 - Corresponding Left Atrial Hypertrophy (LAH)
 - T wave Strain Pattern V5 / V6
 - Intrinsicoid Deflection in V5 / V6 > 45 ms
 - V1 S wave + V5 or V6 R wave > 35 mm
 - R or S wave in any LIMB LEAD > 2.0 mV (20 mm)
- 4. WOUT-Parkinson-White (IVpe D)
 - Presence of DELTA waves
 - Short P-R Interval (< 120 ms)
 - Wide QRS (> 120 ms)

"EXAGGERATED" QRS SIZE in V leads FROM LEFT VENTRICULAR HYPERTROPHY

V1 V2 V3 V4 V5 V6

19-JUN-1995 22:39:00 ST. JOSEPH'S HOSPITAL-TCHD ROUTINE RETRIEVAL

119	BPM
126	ms
78	ms
282/397	ms
68 46	41
	119 126 78 282/397 68 46

Sinus tachycardia Minimal voltage criteria for LVH, may be normal variant Borderline ECG

EKG CLASS #WR03446043

LEFT VENTRICULAR HYPERTROPHY

16 yr		Vent. rate	92	BPM
Female	Caucasian	PR interval	112	ms
		QRS duration	118	ms
Room:R	EC	QT/QTc	356/440	ms
Loc:20	Option:50	P-R-T axes	59 -22	107

what is the cause of LATE TRANSITION on this EKG ?

History:Unknown Technician: DP Test ind:EKG EKG CLASS #WR030100 60783

.... WITH SOME COMMON HELPFUL CLUES:

1. Old Anterior MI

- Q Waves in V1, V2, and /or V3
- Other causes of LATE TRANSITION ruled out
- 2. Left Bundle Branch Bock (LBBB)
 - Supraventricular Rhythm
 - QRS wider than 120 ms (.12 sec)
 - RsR' or RR' ("notching") in V5 and/or V6
- 3. Left Ventricular Hypertrophy (LVH)
 - Corresponding Left Atrial Hypertrophy (LAH)
 - T wave Strain Pattern V5 / V6
 - Intrinsicoid Deflection in V5 / V6 > 45 ms
 - V1 S wave + V5 or V6 R wave > 35 mm
 - R or S wave in any LIMB LEAD > 2.0 mV (20 mm)

4. Wolff-Parkinson-White (Type B)

- Presence of DELTA waves
- Short P-R Interval (< 120 ms)
- Wide QRS (> 120 ms)

COMMON CAUSES OF LATE TRANSITION WITH SOME COMMON HELPFUL CLUES:

- 1. Old Anterior MI
 - Q Waves in V1, V2, and /or V3
 - Other causes of LATE TRANSITION ruled out
- 2. Left Bundle Branch Bock (LDDB)
 - Supraventricular Phythm
 - QRS wider than 120 ms (.12 sec)
 - ReR' or RR' ("notching") in V5 and/or V6
- 3. Left Ventricular Hypertrophy (LVH)
 - Corresponding Left Atrial Hypertrophy (LAH)
 - T wave Strain Pattern VF / V6
 - Intrinsicoid Deflection in V5 / V6 > 45 ms
 - V1 S wave + V5 or V6 R wave > 35 mm
 - B or S wave in any LIMB LEAD > 2.0 mV (20 mm)
- 4. Wolff-Parkinson-White (Type B)
 - Presence of DELTA waves
 - Short P-R Interval (< 120 ms)
 - Wide QRS (> 120 ms)

25mm/s 10mm/mV 40Hz 005C 12SL 250 CID: 12 EID:18 EDT: 16:01 17-MAY-1997 ORDER:

MOM and DAD at Lee's Diner, York, PA 2006